1
|
Holme S, Sapia J, Davey M, Vanni S, Conibear E. An S-acylated N-terminus and a conserved loop regulate the activity of the ABHD17 deacylase. J Cell Biol 2025; 224:e202405042. [PMID: 39951021 PMCID: PMC11827582 DOI: 10.1083/jcb.202405042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The dynamic addition and removal of long-chain fatty acids modulate protein function and localization. The α/β hydrolase domain-containing (ABHD) 17 enzymes remove acyl chains from membrane-localized proteins such as the oncoprotein NRas, but how the ABHD17 proteins are regulated is unknown. Here, we used cell-based studies and molecular dynamics simulations to show that ABHD17 activity is controlled by two mobile elements-an S-acylated N-terminal helix and a loop-that flank the putative substrate-binding pocket. Multiple S-acylation events anchor the N-terminal helix in the membrane, enabling hydrophobic residues in the loop to engage with the bilayer. This stabilizes the conformation of both helix and loop, alters the conformation of the binding pocket, and optimally positions the enzyme for substrate engagement. S-acylation may be a general feature of acyl-protein thioesterases. By providing a mechanistic understanding of how the lipid modification of a lipid-removing enzyme promotes its enzymatic activity, this work contributes to our understanding of cellular S-acylation cycles.
Collapse
Affiliation(s)
- Sydney Holme
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Trybus M, Hryniewicz-Jankowska A, Czogalla A, Sikorski AF. EFR3A, an Intriguing Gene, and Protein with a Scaffolding Function. Cells 2025; 14:445. [PMID: 40136694 PMCID: PMC11941745 DOI: 10.3390/cells14060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2-3 protein isoforms. EFR3s are involved in several physiological functions, mostly including phosphatidyl inositide phosphates, e.g., phototransduction (insects), GPCRs, and insulin receptors regulated processes (mammals). Mutations in the EFR3A were linked to several types of human disorders, i.e., neurological, cardiovascular, and several tumors. Structural data on the atomic level indicate the extended superhelical rod-like structure of the first two-thirds of the molecule with a typical armadillo repeat motif (ARM) in the N-terminal part and a triple helical motif in its C-terminal part. EFR3s' best-known molecular function is anchoring the giant phosphatidylinositol 4-kinase A complex to the plasma membrane crucial for cell signaling, also linked directly to the KRAS mutant oncogenic function. Another function connected to the newly uncovered interaction of EFR3A with flotillin-2 may be the participation of the former in the organization and regulation of the membrane raft domain. This review presents EFR3A as an intriguing subject of future studies.
Collapse
Affiliation(s)
- Magdalena Trybus
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| |
Collapse
|
3
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. SCIENCE ADVANCES 2024; 10:eadp6660. [PMID: 39705356 DOI: 10.1126/sciadv.adp6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III α (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryogenic electron microscopy structure of the C terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry, and mutational analysis. The EFR3A C terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple posttranslational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
5
|
Tóth DJ, Tóth JT, Damouni A, Hunyady L, Várnai P. Effect of hormone-induced plasma membrane phosphatidylinositol 4,5-bisphosphate depletion on receptor endocytosis suggests the importance of local regulation in phosphoinositide signaling. Sci Rep 2024; 14:291. [PMID: 38168911 PMCID: PMC10761818 DOI: 10.1038/s41598-023-50732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of β2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, β2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of β2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease β2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Semmelweis University, Budapest, Üllői út 78/B, 1082, Hungary
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Institute of Enzymology, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok körútja 2, 1117, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary.
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Suresh S, Burke JE. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease. Adv Biol Regul 2023; 90:100996. [PMID: 37979461 DOI: 10.1016/j.jbior.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
9
|
Chen GL, Li J, Zhang J, Zeng B. To Be or Not to Be an Ion Channel: Cryo-EM Structures Have a Say. Cells 2023; 12:1870. [PMID: 37508534 PMCID: PMC10378246 DOI: 10.3390/cells12141870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Ion channels are the second largest class of drug targets after G protein-coupled receptors. In addition to well-recognized ones like voltage-gated Na/K/Ca channels in the heart and neurons, novel ion channels are continuously discovered in both excitable and non-excitable cells and demonstrated to play important roles in many physiological processes and diseases such as developmental disorders, neurodegenerative diseases, and cancer. However, in the field of ion channel discovery, there are an unignorable number of published studies that are unsolid and misleading. Despite being the gold standard of a functional assay for ion channels, electrophysiological recordings are often accompanied by electrical noise, leak conductance, and background currents of the membrane system. These unwanted signals, if not treated properly, lead to the mischaracterization of proteins with seemingly unusual ion-conducting properties. In the recent ten years, the technical revolution of cryo-electron microscopy (cryo-EM) has greatly advanced our understanding of the structures and gating mechanisms of various ion channels and also raised concerns about the pore-forming ability of some previously identified channel proteins. In this review, we summarize cryo-EM findings on ion channels with molecular identities recognized or disputed in recent ten years and discuss current knowledge of proposed channel proteins awaiting cryo-EM analyses. We also present a classification of ion channels according to their architectures and evolutionary relationships and discuss the possibility and strategy of identifying more ion channels by analyzing structures of transmembrane proteins of unknown function. We propose that cross-validation by electrophysiological and structural analyses should be essentially required for determining molecular identities of novel ion channels.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
EFR3 and phosphatidylinositol 4-kinase IIIα regulate insulin-stimulated glucose transport and GLUT4 dispersal in 3T3-L1 adipocytes. Biosci Rep 2022; 42:231469. [PMID: 35735144 PMCID: PMC9272592 DOI: 10.1042/bsr20221181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.
Collapse
|
12
|
Romanet JL, Cupo KL, Yoder JA. Knockdown of Transmembrane Protein 150A ( TMEM150A) Results in Increased Production of Multiple Cytokines. J Interferon Cytokine Res 2022; 42:336-342. [PMID: 35834652 PMCID: PMC9347386 DOI: 10.1089/jir.2022.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced signaling through Toll-like receptor 4 (TLR4) is mediated by the plasma membrane lipid, phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] and its derivatives diacylglycerol and inositol trisphosphate. Levels of PI(4,5)P2 are controlled enzymatically and fluctuate in LPS-stimulated cells. Recently, transmembrane protein 150A (TMEM150A/TM6P1/damage-regulated autophagy modulator 5) has been shown to regulate PI(4,5)P2 production at the plasma membrane by modifying the composition of the phosphatidylinositol 4-kinase enzyme complex. To determine if TMEM150A function impacts TLR4 signaling, TMEM150A was knocked down in TLR4-expressing epithelial cells and cytokine expression quantified after LPS stimulation. In general, decreased expression of TMEM150A led to increased levels of LPS-induced cytokine secretion and transcript levels. Unexpectedly, knockdown of TMEM150A in a lung epithelial cell line (H292) also led to increased cytokine levels in the unstimulated conditions suggesting TMEM150A plays an important role in cellular homeostasis. Future studies will investigate if TMEM150A plays a similar role for other TLR agonists and in other cell lineages.
Collapse
Affiliation(s)
- Jessica L Romanet
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Katherine L Cupo
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|