1
|
Schrier I, Slotki-Itzchakov O, Elkis Y, Most-Menachem N, Adato O, Fitoussi-Allouche D, Shpungin S, Unger R, Nir U. Fer governs mTORC1 regulating pathways and sustains viability of pancreatic ductal adenocarcinoma cells. Front Oncol 2024; 14:1427029. [PMID: 39206154 PMCID: PMC11349523 DOI: 10.3389/fonc.2024.1427029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a high percentage of morbidity. The deciphering and identification of novel targets and tools for intervening with its adverse progression are therefore of immense importance. To address this goal we adopted a specific inhibitor of the intracellular tyrosine kinase Fer, whose expression level is upregulated in PDAC tumors, and is associated with poor prognosis of patients. Subjecting PDAC cells to the E260-Fer inhibitor, unraveled its simultaneous effects on the mitochondria, and on a non-mitochondrial ERK1/2 regulatory cascade. E260 caused severe mitochondrial deformation, resulting in cellular- aspartate and ATP depletion, and followed by the activation of the metabolic sensor AMPK. This led to the phosphorylation and deactivation of the bona fide AMPK substrate, RAPTOR, which serves as a positive regulator of the mTORC1 metabolic hub. Accordingly, this resulted in the inhibition of the mTORC1 activity. In parallel, E260 downregulated the activation state of the ERK1/2 kinases, and their ability to neutralize the mTORC1 suppressor TSC2, thereby accentuating the inhibition of mTORC1. Importantly, both activation of AMPK and downregulation of ERK1/2 and mTORC1 were also achieved upon the knockdown of Fer, corroborating the regulatory role of Fer in these processes. Concomitantly, in PDAC tumors and not in healthy pancreatic tissues, the expression levels of Fer demonstrate moderate but statistically significant positive correlation with the expression levels of mTOR and its downstream effector LARP1. Finally, targeting the Fer driven activation of mTORC1, culminated in necrotic death of the treated PDAC cells, envisaging a new intervention tool for the challenging PDAC disease.
Collapse
Affiliation(s)
- Ilan Schrier
- Department of Surgery, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orel Slotki-Itzchakov
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nofar Most-Menachem
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
2
|
Taniguchi T, Yasumatsu I, Inagaki H, Baba D, Toyota A, Kaneta Y, Odagiri T, Momose T, Kawai J, Imaoka T, Nakayama K. Optimization of Novel Pyrido-pyridazinone Derivatives as FER Tyrosine Kinase Inhibitors, Leading to the Potent DS08701581. ACS Med Chem Lett 2024; 15:1010-1016. [PMID: 39015278 PMCID: PMC11247628 DOI: 10.1021/acsmedchemlett.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Previously, we reported the new pyrido-pyridazinone template as a feline sarcoma-related (FER) tyrosine kinase inhibitor. Representative compound 1 (DS21360717) showed strong enzyme inhibitory activity (IC50 = 0.5 nM), however, its antitumor effect was insufficient, probably due to poor solubility and resultant low bioavailability (BA). In addition, the kinase selectivity was inadequate, which may result in certain safety risks. Here, we focused on derivatization of the unoptimized C-5 position to obtain promising FER inhibitors possessing strong antitumor effects and improved selectivity, referring to their X-ray crystal structure and the docking model with FES proto-oncogene tyrosine kinase as an FER surrogate. While establishing the synthetic route of the pyrido-pyridazinone scaffold, we obtained a desired compound via our derivatization. Our optimized compound 17c (DS08701581) showed the highest class cell-free and cell activities in this template, good oral BA, and improved kinase selectivity, resulting in significant tumor growth inhibition in the Ba/F3-FER tumor model without body weight loss.
Collapse
Affiliation(s)
- Toru Taniguchi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Isao Yasumatsu
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroaki Inagaki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daichi Baba
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akiko Toyota
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuyuki Kaneta
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Odagiri
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takayuki Momose
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Junya Kawai
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomoki Imaoka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Nakayama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
3
|
Vallese S, Tancredi C, Giovannoni I, Diociaiuti A, Stracuzzi A, Rossi S, Alaggio R, Barresi S. Identification of a novel SH3PXD2B::FER fusion in a case of plexiform myofibroblastic tumor and review of the literature. Genes Chromosomes Cancer 2024; 63:e23224. [PMID: 39660974 DOI: 10.1002/gcc.23224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 12/12/2024] Open
Abstract
Fibroblastic/myofibroblastic tumors encompass a wide spectrum of lesions. Among them, plexiform myofibroblastoma (PM) represents a rare and distinctive entity recently described as mostly occurring in children and with a favorable prognosis. Histologically, PM shows SMA, CD34, and desmin expression in most cases, while it is negative for β-catenin and S100. To date, the molecular mechanisms underlying PM tumorigenesis remain largely unknown. Herein, we describe a 7-year-old girl with a myofibroblastic lesion with plexiform features arising in the right deltoid region. The tumor proved positive for SMA staining, in absence of desmin, CD34, S100, and EMA expression. RNAseq analysis revealed a novel in-frame SH3PXD2B::FER fusion gene. The FER gene encodes a cytoplasmic tyrosine kinase which is implicated in several biologically aggressive tumors, where it is overexpressed and associated with EGFR recycling and stabilization. In our case, immunohistochemical analysis revealed a strong positivity for EGFR indicating an upregulation of EGFR transcription that might correlate with the novel chimeric protein involving the FER kinase domain. To our knowledge, the SH3PXD2B::FER fusion has never been reported previously. Whether the current case represents an example of a plexiform myofibroblastic tumor or a distinct tumor entity remains to be determined.
Collapse
Affiliation(s)
- Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chantal Tancredi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Andrea Diociaiuti
- Unit of Dermatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
6
|
First person – Lilian Sluimer. J Cell Sci 2023. [DOI: 10.1242/jcs.261006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping researchers promote themselves alongside their papers. Lilian Sluimer is first author on ‘ SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells’, published in JCS. Lilian conducted the research described in this article while working on this research as a first-year master's student and continued working on this project as a research technician for a year in Patrick Derksen's lab at UMC Utrecht, The Netherlands. She is now a PhD student in the lab of Anna Akhmanova at the Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, The Netherlands, investigating the organization and dynamics of cytoskeletal microtubule networks in different cellular systems.
Collapse
|