1
|
Wang YC, Chang YW, Yang F, Gong WR, Hu J, Du YZ. A potential trade-off between reproduction and enhancement of thermotolerance in Liriomyza trifolii populations driven by thermal acclimation. J Therm Biol 2024; 125:103988. [PMID: 39366146 DOI: 10.1016/j.jtherbio.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The invasive pest, Liriomyza trifolii, poses a significant threat to ornamental and vegetable plants. It spreads rapidly and causes large-scale outbreaks with pronounced thermotolerance. In this study, we developed L. trifolii strains adapted to high temperatures (strains designated 35 and 40); these were generated from a susceptible strain (designated S) by long-term thermal acclimation to 35 °C and 40 °C, respectively. Age-stage, two-sex life tables, thermal preferences, critical thermal limits, knockdown behaviors, eclosion and survival rates as well as expression of genes encoding heat shock proteins (Hsps) were compared for the three strains. Our findings indicated that the thermotolerance of L. trifolii was enhanced after long-term thermal acclimation, which suggested an adaptive plastic response to thermal stress. A trade-off between reproduction and thermotolerance was observed under thermal stress, potentially improving survival of the population and fostering adaptionary changes. Acclimation at 35 °C improved reproductive performance and population density of L. trifolii, particularly by enhancing the fecundity of female adults and accelerating the speed of development. Although the 40 strain exhibited the highest developmental speed and greater thermotolerance, it incurred a larger reproductive cost. This study provides a theoretical framework for monitoring and controlling leafminers and understanding their evolutionary adaptation to environmental changes.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China.
| | - Fei Yang
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Wang Y, Chang Y, Gong W, Du Y. Life Table Study of Liriomyza trifolii and Its Contribution to Thermotolerance: Responding to Long-Term Selection Pressure for Abamectin Resistance. INSECTS 2024; 15:462. [PMID: 38921175 PMCID: PMC11203713 DOI: 10.3390/insects15060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Liriomyza trifolii is a significant invasive pest that targets horticultural and vegetable crops, causing large-scale outbreaks characterized by pronounced thermotolerance and insecticide resistance. This study examined the impact of long-term selection for abamectin resistance during the larval stage of L. trifolii on its population dynamics and thermal tolerance. We conducted a comprehensive comparison between the abamectin-resistant strain (AB-R) and the susceptible strain (S), including age-stage, two-sex life table analysis, thermal preference (Tpref), critical thermal maximum (CTmax), heat knockdown times (HKDTs), eclosion and survival rates, and LtHsp expression under heat stress. Our results showed that while selection for abamectin resistance was detrimental to survival and reproduction, it activated self-defense mechanisms and rapid adaptive adjustments and conferred modest thermal tolerance, which suggests a dual nature of insecticide effects. The AB-R strain exhibited significantly higher thermal preference and CTmax values, along with a longer HKDT and improved survival. Additionally, there was a significant upregulation of LtHsp expression in the AB-R strain compared to the S strain. These findings indicate that the evolution of thermal adaptation was accompanied by abamectin resistance development, emphasizing the necessity of considering temperature effects when applying chemical control. Our study provides valuable insights into how physiological acclimation may help mitigate the toxic effects of insecticides and illustrate how insects respond to multiple environmental pressures.
Collapse
Affiliation(s)
- Yucheng Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.W.); (Y.C.)
| | - Yawen Chang
- College of Plant Protection, Yangzhou University, Yangzhou 225000, China; (Y.W.); (Y.C.)
| | - Weirong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China;
| | - Yuzhou Du
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
3
|
Wang YC, Chang YW, Gong WR, Hu J, Du YZ. The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. PEST MANAGEMENT SCIENCE 2024; 80:2053-2060. [PMID: 38131224 DOI: 10.1002/ps.7944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Liriomyza trifolii is an economically significant, invasive pest of horticultural and vegetable crops. The larvae form tunnels in foliage and hasten senescence and death. Outbreaks of L. trifolii often erupt in hot weather and are driven by thermotolerance; furthermore, the poor effectiveness of pesticides has made outbreaks more severe. But it is still unclear whether the development of insecticide tolerance will contribute to thermotolerance in L. trifolii. RESULTS To explore potential synergistic relationships between insecticide exposure and thermotolerance in L. trifolii, we first generated an abamectin-resistant (AB-R) strain. Knockdown behavior, eclosion and survival rates, and expression levels of genes encoding heat shock proteins (Hsps) in L. trifolii were then examined in AB-R and abamectin-susceptible (AB-S) strains. Our results demonstrated that long-term selection pressure for abamectin resistance made L. trifolii more prone to develop cross-resistance to other insecticides containing similar ingredients. Furthermore, the AB-R strain exhibited enhanced thermotolerance and possessed an elevated critical thermal maximum temperature, and upregulated expression levels of Hsps during heat stress. CONCLUSION Collectively, our results indicate that thermal adaptation in L. trifolii was accompanied by emerging abamectin resistance. This study provides a theoretical basis for investigating the synergistic or cross-adaptive mechanisms that insects use to cope with adversity and demonstrates the complexity of insect adaptation to environmental and chemical stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chang YW, Yan YQ, Hu J, Du YZ. Characterization of genes encoding heat shock proteins reveals a differential response to temperature in two geographic populations of Liriomyza trifolii (Diptera: Agromyzidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101156. [PMID: 37976966 DOI: 10.1016/j.cbd.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Liriomyza trifolii is a significant, invasive pest that damages horticultural crops and vegetables. The distribution of L. trifolii is influenced by temperature, and prior research has demonstrated that variations in thermal adaptability differ among geographic populations of the insect. Heat shock proteins (Hsps) are involved in adaptation to temperatures; however, the underlying molecular mechanism for thermal adaption in different L. trifolii populations remains unclear. This study examines the temperature adaptability of two L. trifolii populations from Hainan (HN) and Jiangsu (JS) provinces. The results indicate that the HN population has a higher survival rate and a higher critical thermal maximum (CTmax) than the JS population under high temperature stress. Transcriptome data at 42 °C revealed that the JS population has more differentially expressed genes (DEGs) than the HN population, while the HN population has more upregulated DEGs. The two populations were similar in functional annotation of DEGs, and a large number of Hsps were upregulated. However, the HN population had larger numbers and higher expression levels of Hsps during heat stress as compared to the JS population. Additionally, the expression patterns of differentially expressed Hsps varied between the HN and JS populations in response to different elevated temperatures. Notably, the transcription levels of Hsp70s were higher in the HN population as compared to the JS population, while the expression level of genes encoding small heat shock proteins was higher in the JS population. These findings have significant scientific value in understanding the underlying mechanism of temperature adaption in L. trifolii and provide a fresh perspective on the distribution of this invasive pest.
Collapse
Affiliation(s)
- Ya-Wen Chang
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Qing Yan
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Yu-Zhou Du
- School of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Putero FA, Mensch J, Schilman PE. Effect of brief exposures of anesthesia on thermotolerance and metabolic rate of the spotted-wing fly, Drosophila suzukii: Differences between sexes? JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104549. [PMID: 37495184 DOI: 10.1016/j.jinsphys.2023.104549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The spotted-wing fly, Drosophila suzukii, is a world-wide pest insect for which there is increasing interest in its physiological traits including metabolism and thermotolerance. Most studies focus only on survival to different time exposures to extreme temperatures, mainly in female flies. In addition, it has not been tested yet how anesthesia affects these measurements. We analyzed the effects of anesthesia by brief exposures to cold, anoxia by CO2 or N2 on three standard thermotolerance assays, as well as the aerobic metabolic rate in both sexes. For heat tolerance we measured CTmax by thermolimit respirometry, and CTmin and chill-coma recovery time for cold tolerance. Aerobic metabolism was calculated by CO2 production of individual flies in real time by open flow respirometry. Results showed that females have a significantly higher V̇CO2 for inactive (at 25 °C) and maximum metabolic rate than males. This difference is mainly explained by body mass and disappears after mass correction. Males had a more sensitive MR to temperature than females showed by a significantly higher Q10 (2.19 vs. 1.98, for males and females, respectively). We observed a significantly lower CTmin (X2 = 4.27, P = 0.03) in females (3.68 ± 0.38 °C) than males (4.56 ± 0.39 °C), although we did not find significant effects of anesthesia. In contrast, anesthesia significantly modifies CTmax for both sexes (F3,62 = 7.86, P < 0.001) with a decrease of the CTmax in cold-anesthetized flies. Finally, we found a significantly higher CTmax in females (37.87 ± 0.07 °C) than males (37.36 ± 0.09 °C). We conclude that cold anesthesia seems to have detrimental effects on heat tolerance, and females have broader thermotolerance range than males, which could help them to establish in invaded temperate regions with more variable environmental temperatures.
Collapse
Affiliation(s)
- Florencia A Putero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina
| | - Julian Mensch
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina.
| | - Pablo E Schilman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecofisiología de Insectos, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Longan ER, Fay JC. Experimental evolution of Saccharomyces uvarum at high temperature yields elevation of maximal growth temperature and loss of the mitochondrial genome. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000831. [PMID: 37334198 PMCID: PMC10276265 DOI: 10.17912/micropub.biology.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
An organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy. Using a selection scheme inspired by Dallinger, we sought to increase the upper thermal limit of Saccharomyces uvarum . This species has a maximum growth temperature of 34-35°C, considerably lower than S. cerevisiae . After 136 passages on solid plates at progressively higher temperatures, we recovered a clone that can grow at 36°C, a gain of ~1.5°C. Additionally, the evolved clone lost its mitochondrial genome and cannot respire. In contrast, an induced rho 0 derivative of the ancestor shows a decrease in thermotolerance. Also, incubation of the ancestor at 34°C for 5 days increased the frequency of petite mutants drastically compared to 22°C, supporting the notion that mutation pressure rather than selection drove loss of mtDNA in the evolved clone. These results demonstrate that S. uvarum 's upper thermal limit can be elevated slightly via experimental evolution and corroborate past observations in S. cerevisiae that high temperature selection schemes can inadvertently lead to production of the potentially undesirable respiratory incompetent phenotype in yeasts.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
7
|
Akashi H. Thermal Sensitivity of Heat Sensor TRPA1 Correlates With Temperatures Inducing Heat Avoidance Behavior in Terrestrial Ectotherms. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.583837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Temperature is an essential environmental factor that controls an organism’s performances. As ectothermic animals largely rely on external heat sources for adjusting their body temperature, thermal perception is a primary process of behavioral thermoregulation. Transient receptor potential ankyrin 1 (TRPA1) is a heat sensitive ion channel in most non-mammalian species, and its heat activation has been suggested to induce heat avoidance behaviors in ectothermic animals. However, associations between TRPA1 and ecologically relevant temperatures have not been investigated, and the analyses including diverse taxa will provide robust support for understanding the associations. Here, I conducted extensive literature review, and assembled published data on thermal threshold of TRPA1 and three physiological parameters: the experimental voluntary maximum (EVM), which is body temperatures when heat avoidance behaviors are induced; the critical thermal maximum (CTmax), which is a point in temperature beyond which an organism becomes incapacitated; and average body temperature (Tmean) recorded in the field. Then, I examined the relationships between thermal threshold of TRPA1 and each of the three physiological parameters. As phylogenetically closely related species tend to show similar trait values among species, I conducted the regression analyses by accounting for phylogenetic distances among species. This study supports previous research by affirming that thermal threshold of TRPA1 is substantially correlated with body temperature that the animals escaped from the heat source, represented here as EVM. Nevertheless, thermal threshold of TRPA1 showed a statistically insignificant correlation with CTmax and Tmean. The results suggest that although thermal threshold of TRPA1 is evolutionarily labile, its associations with EVM is highly conserved among diverse terrestrial ectotherms. Therefore, thermal threshold of TRPA1 could be a useful parameter to evaluate species vulnerability to thermal stress particularly in the recent climate warming scenario.
Collapse
|
8
|
Garcia‐Robledo C, Kuprewicz EK, Dierick D, Hurley S, Langevin A. The affordable laboratory of climate change: devices to estimate ectotherm vital rates under projected global warming. Ecosphere 2020. [DOI: 10.1002/ecs2.3083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Carlos Garcia‐Robledo
- Department of Ecology and Evolutionary Biology University of Connecticut 75 North Eagleville Road, Unit 3043 Storrs Connecticut 06269 USA
- Organization for Tropical Studies La Selva Biological Station Puerto Viejo Sarapiqui Costa Rica
| | - Erin K. Kuprewicz
- Department of Ecology and Evolutionary Biology University of Connecticut 75 North Eagleville Road, Unit 3043 Storrs Connecticut 06269 USA
| | - Diego Dierick
- Organization for Tropical Studies La Selva Biological Station Puerto Viejo Sarapiqui Costa Rica
| | - Sarah Hurley
- Department of Ecology and Evolutionary Biology University of Connecticut 75 North Eagleville Road, Unit 3043 Storrs Connecticut 06269 USA
| | - Abigail Langevin
- Department of Ecology and Evolutionary Biology University of Connecticut 75 North Eagleville Road, Unit 3043 Storrs Connecticut 06269 USA
| |
Collapse
|
9
|
Garcia-Robledo C, Charlotten-Silva M, Cruz C, Kuprewicz EK. Low quality diet and challenging temperatures affect vital rates, but not thermal tolerance in a tropical insect expanding its diet to an exotic plant. J Therm Biol 2018; 77:7-13. [PMID: 30196902 DOI: 10.1016/j.jtherbio.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
Determining responses of organisms to changing temperatures is a research priority, as global warming threatens populations and ecosystems worldwide. Upper thermal limits are frequently measured as the critical thermal maximum (CTmax), a quick bioassay where organisms are exposed to increasing temperatures until individuals are not able to perform basic motor activities such as walking or flying. A more informative approach to understand organism responses to global warming is to evaluate how vital rates, such as growth or survival, change with temperatures. The main objectives of this study are: (1) to determine if factors affecting insect vital rates such as diet quality, developmental temperatures or acclimation also affect CTmax and (2) to determine if vital rates of different life stages (i.e., insect larvae or adults) display different responses to temperature changes. If different life stages have particular thermal requirements, this may indicate different susceptibility to global warming. This study focuses on Cephaloleia belti (Coleoptera: Chrysomelidae), a tropical insect currently expanding its diet to an exotic host plant. We determined how high and low-quality diets (i.e., native vs novel host), as well as exposure temperatures affect CTmax of adult beetles. We also estimated larval and adult survival when feeding on high and low quality host plants, when exposed to temperatures typical of the elevational distribution of this species, or when exposed to projected temperatures in 100 years. We did not detect an effect of diet quality or acclimation on CTmax. However, larvae and adults had different thermal requirements. CTmax is not affected by previous diet or acclimation as an adult. We propose that to understand processes involved in the adaptation and persistence of ectotherm populations in a warming world, studies must explore responses beyond CTmax, and focus on the response of vital rates to changing temperatures.
Collapse
Affiliation(s)
- Carlos Garcia-Robledo
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 North Eagleville Rd., Unit 3043, Storrs, CT 06269, USA.
| | - Mariela Charlotten-Silva
- Department of Biology, University of Puerto Rico at Ponce, PO Box 7183, Ponce, PR 00732, USA; Research Experience for Undergraduates NSF LSAMP-OTS. Organization for Tropical Studies (OTS), Duke University, Box 90633, Durham, NC 27708, USA
| | - Christopher Cruz
- SUNY College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, NY 13210, USA; Research Experience for Undergraduates NSF LSAMP-OTS. Organization for Tropical Studies (OTS), Duke University, Box 90633, Durham, NC 27708, USA
| | - Erin K Kuprewicz
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 North Eagleville Rd., Unit 3043, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Heinrich EC, Gray EM, Ossher A, Meigher S, Grun F, Bradley TJ. Aerobic function in mitochondria persists beyond death by heat stress in insects. J Therm Biol 2017; 69:267-274. [PMID: 29037393 DOI: 10.1016/j.jtherbio.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/07/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
Abstract
The critical thermal maximum (CTmax) of insects can be determined using flow-through thermolimit respirometry. It has been demonstrated that respiratory patterns cease and insects do not recover once the CTmax temperature has been reached. However, if high temperatures are maintained following the CTmax, researchers have observed a curious phenomenon whereby the insect body releases a large burst of carbon dioxide at a rate and magnitude that often exceed that of the live insect. This carbon dioxide release has been termed the post-mortal peak (PMP). We demonstrate here that the PMP is observed only at high temperatures, is oxygen-dependent, is prevented by cyanide exposure, and is associated with concomitant consumption of oxygen. We conclude that the PMP derives from highly active, aerobic metabolism in the mitochondria. The insect tracheal system contains air-filled tubes that reach deep into the tissues and allow mitochondria access to oxygen even upon organismal death. This unique condition permits the investigation of mitochondrial function during thermal failure in a manner that cannot be achieved using vertebrate organisms or in vitro preparations.
Collapse
Affiliation(s)
- Erica C Heinrich
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | - Emilie M Gray
- Department of Organismal Biology & Ecology, Colorado College, 14 East Cache La Poudre St., Colorado Springs, CO 80903, USA
| | - Ashley Ossher
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| | - Stephen Meigher
- Department of Organismal Biology & Ecology, Colorado College, 14 East Cache La Poudre St., Colorado Springs, CO 80903, USA
| | - Felix Grun
- Center for Complex Biological Systems, University of California, Irvine, 2620 Biological Sciences III, Irvine, CA 92697-2280, USA
| | - Timothy J Bradley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA
| |
Collapse
|
11
|
DeVries ZC, Kells SA, Appel AG. Estimating the critical thermal maximum (CTmax) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods. Comp Biochem Physiol A Mol Integr Physiol 2016; 197:52-7. [PMID: 26970580 DOI: 10.1016/j.cbpa.2016.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Evaluating the critical thermal maximum (CTmax) in insects has provided a number of challenges. Visual observations of endpoints (onset of spasms, loss of righting response, etc.) can be difficult to measure consistently, especially with smaller insects. To resolve this problem, Lighton and Turner (2004) developed a new technique: thermolimit respirometry (TLR). TLR combines real time measurements of both metabolism (V·CO2) and activity to provide two independent, objective measures of CTmax. However, several questions still remain regarding the precision of TLR and how accurate it is in relation to traditional methods. Therefore, we evaluated CTmax of bed bugs using both traditional (visual) methods and TLR at three important metabolic periods following feeding (1d, 9d, and 21d). Both methods provided similar estimates of CTmax, although traditional methods produced consistently lower values (0.7-1°C lower than TLR). Despite similar levels of precision, TLR provided a more complete profile of thermal tolerance, describing changes in metabolism and activity leading up to the CTmax, not available through traditional methods. In addition, feeding status had a significant effect on bed bug CTmax, with bed bugs starved 9d (45.19[±0.20]°C) having the greatest thermal tolerance, followed by bed bugs starved 1d (44.64[±0.28]°C), and finally bed bugs starved 21d (44.12[±0.28]°C). Accuracy of traditional visual methods in relation to TLR is highly dependent on the selected endpoint; however, when performed correctly, both methods provide precise, accurate, and reliable estimations of CTmax.
Collapse
Affiliation(s)
- Zachary C DeVries
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849, USA; Department of Entomology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Stephen A Kells
- Department of Entomology, 219 Hodson Hall, 1980 Folwell Ave., University of Minnesota, St. Paul, MN 55108, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Halsey LG, Matthews PGD, Rezende EL, Chauvaud L, Robson AA. The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms. Oecologia 2015; 177:1117-29. [PMID: 25575673 DOI: 10.1007/s00442-014-3190-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/10/2014] [Indexed: 11/27/2022]
Abstract
The rate of change in resting metabolic rate (RMR) as a result of a temperature increase of 10 °C is termed the temperature coefficient (Q10), which is often used to predict how an organism's total MR will change with temperature. However, this method neglects a potentially key component of MR; changes in activity level (and thus activity MR; AMR) with temperature may significantly alter the relationship between MR and temperature. The present study seeks to describe how thermal effects on total MR estimated from RMR-temperature measurements can be misleading when the contribution of activity to total MR is neglected. A simple conceptual framework illustrates that since the relationship between activity levels and temperature can be different to the relationship between RMR and temperature, a consistent relationship between RMR and total MR cannot be assumed. Thus the thermal effect on total MR can be considerably different to the thermal effect on RMR. Simultaneously measured MR and activity from three ectotherm species with differing behavioural and physiological ecologies were used to empirically examine how changes in temperature drive changes in RMR, activity level, AMR and the Q10 of MR. These species exhibited varied activity- and MR-temperature relationships, underlining the difficulty in predicting thermal influences on activity levels and total MR. These data support a model showing that thermal effects on total MR will deviate from predictions based solely on RMR; this deviation will depend upon the difference in Q10 between AMR and RMR, and the relative contribution of AMR to total MR. To develop mechanistic, predictive models for species' metabolic responses to temperature changes, empirical information about the relationships between activity levels, MR and temperature, such as reported here, is required. This will supersede predictions based on RMR alone.
Collapse
Affiliation(s)
- L G Halsey
- Department of Life Sciences, Centre for Research in Ecology, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK,
| | | | | | | | | |
Collapse
|
13
|
van Heerwaarden B, Lee RFH, Overgaard J, Sgrò CM. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. J Evol Biol 2014; 27:2541-53. [PMID: 25262984 DOI: 10.1111/jeb.12510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 11/27/2022]
Abstract
Phenotypic plasticity may be an important initial mechanism to counter environmental change, yet we know relatively little about the evolution of plasticity in nature. Species with widespread distributions are expected to have evolved higher levels of plasticity compared with those with more restricted, tropical distributions. At the intraspecific level, temperate populations are expected to have evolved higher levels of plasticity than their tropical counterparts. However, empirical support for these expectations is limited. In addition, no studies have comprehensively examined the evolution of thermal plasticity across life stages. Using populations of Drosophila simulans collected from a latitudinal cline spanning the entire east coast of Australia, we assessed thermal plasticity, measured as hardening capacity (the difference between basal and hardened thermal tolerance) for multiple measures of heat and cold tolerance across both adult and larval stages of development. This allowed us to explicitly ask whether the evolution of thermal plasticity is favoured in more variable, temperate environments. We found no relationship between thermal plasticity and latitude, providing little support for the hypothesis that temperate populations have evolved higher levels of thermal plasticity than their tropical counterparts. With the exception of adult heat survival, we also found no association between plasticity and ten climatic variables, indicating that the evolution of thermal plasticity is not easily predicted by the type of environment that a particular population occupies. We discuss these results in the context of the role of plasticity in a warming climate.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | | | | | | |
Collapse
|
14
|
Lake SL, MacMillan HA, Williams CM, Sinclair BJ. Static and dynamic approaches yield similar estimates of the thermal sensitivity of insect metabolism. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:761-766. [PMID: 23665211 DOI: 10.1016/j.jinsphys.2013.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Thermal sensitivity of metabolism (estimated by the temperature coefficient, Q10) is important for understanding ectotherm responses to temperature, but can only be measured empirically. Several strategies can be used to estimate thermal sensitivity. Static temperature respirometry uses measurements of metabolic rate taken at a series of temperatures, either by using different individuals at each temperature (independent STR, iSTR), or the same individual at several different temperatures (repeated STR, rSTR). Q10 can also be estimated from measurements of metabolic rate during a monotonic change in temperature (dynamic temperature respirometry, DTR), using either upwards (uDTR) or downwards (dDTR) temperature ramps. We compared estimates of Q10 of metabolic rate in adult females of the fall field cricket, Gryllus pennsylvanicus, derived from measurements made between 8 and 35°C, using iSTR, rSTR, dDTR and uDTR. We also controlled for aging effects during rSTR, and for ramp rate during DTR. We found that all measurement methods yielded statistically comparable measures of Q10. However, DTR provided higher absolute estimates of metabolic rate than STR. Thus, it appears that the different methods provide comparable estimates of Q10, allowing meta-analyses to utilize estimates of Q10 derived from different methods, and for the measurement strategy to be tailored to the characteristics of the organism.
Collapse
Affiliation(s)
- Sarah L Lake
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
15
|
van Heerwaarden B, Sgrò CM. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans. J Evol Biol 2013; 26:800-9. [PMID: 23517493 DOI: 10.1111/jeb.12090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Thermal tolerance is an important factor influencing the distribution of ectotherms, but our understanding of the ability of species to evolve different thermal limits is limited. Based on univariate measures of adaptive capacity, it has recently been suggested that species may have limited evolutionary potential to extend their upper thermal limits under ramping temperature conditions that better reflect heat stress in nature. To test these findings more broadly, we used a paternal half-sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila simulans. We assessed heat tolerance using static (basal and hardened) and ramping assays. Our analyses revealed significant evolutionary potential for all three measures of heat tolerance. Additive genetic variances were significantly different from zero for all three traits. Our G matrix analysis revealed that all three traits would contribute to a response to selection for increased heat tolerance. Significant additive genetic covariances and additive genetic correlations between static basal and hardened heat-knockdown time, marginally nonsignificant between static basal and ramping heat-knockdown time, indicate that direct and correlated responses to selection for increased upper thermal limits are possible. Thus, combinations of all three traits will contribute to the evolution of upper thermal limits in response to selection imposed by a warming climate. Reliance on univariate estimates of evolutionary potential may not provide accurate insight into the ability of organisms to evolve upper thermal limits in nature.
Collapse
Affiliation(s)
- B van Heerwaarden
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
16
|
McCue MD, De Los Santos R. Upper thermal limits of insects are not the result of insufficient oxygen delivery. Physiol Biochem Zool 2013; 86:257-65. [PMID: 23434785 DOI: 10.1086/669932] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Most natural environments experience fluctuating temperatures that acutely affect an organism's physiology and ultimately a species' biogeographic distribution. Here we examine whether oxygen delivery to tissues becomes limiting as body temperature increases and eventually causes death at upper lethal temperatures. Because of the limited direct, experimental evidence supporting this possibility in terrestrial arthropods, we explored the effect of ambient oxygen availability on the thermotolerance of insects representing six species (Acheta domesticus, Hippodamia convergens, Gromphadorhina portentosa, Pogonomyrmex occidentalis, Tenebrio molitor, and Zophobus morio), four taxonomic orders (Blattodea, Coleoptera, Hymenoptera, and Orthoptera), and multiple life stages (e.g., adults vs. larvae or nymphs). The survival curves of insects exposed to temperatures (45° or 50°C) under normoxic conditions (21% O(2)) were compared with those measured under altered oxygen levels (0%, 10%, 35%, and 95% O(2)). Kaplan-Meier log rank analyses followed by Holm-Sidak pairwise comparisons revealed that (1) anoxia sharply diminished survival times in all groups studied, (2) thermotolerance under moderate hyperoxia (35% O(2)) or moderate hypoxia (10% O(2)) was the same as or lower than that under normoxia, (3) half of the experimental treatments involving extreme hyperoxia (95% O(2)) caused reduced thermotolerance, and (4) thermotolerance differed with developmental stage. Adult G. portentosa exhibited much higher thermotolerance than their first-instar nymphs, but responses from larval and adult Z. morio were equivocal. We conclude that some factor(s) separate from oxygen delivery is responsible for death of insects at upper lethal temperatures.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St. Mary's University, One Camino Santa Maria, San Antonio, TX 78228, USA.
| | | |
Collapse
|
17
|
Santos M, Castañeda LE, Rezende EL. Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits? Ecol Evol 2012; 2:2866-80. [PMID: 23170220 PMCID: PMC3501637 DOI: 10.1002/ece3.385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022] Open
Abstract
The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h(2) = 0.25, realized heritabilities of knockdown temperature are around 0.08-0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster.
Collapse
Affiliation(s)
- Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona 08193, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
18
|
Heat stress impedes development and lowers fecundity of the brown planthopper Nilaparvata lugens (Stål). PLoS One 2012; 7:e47413. [PMID: 23071803 PMCID: PMC3469487 DOI: 10.1371/journal.pone.0047413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT(50) (41.8°C) mean development time to adult was increased in both males and females, from 15.2±0.3 and 18.2±0.3 days respectively in the control to 18.7±0.2 and 19±0.2 days in the treated insects. These differences in development arising from heat stress experienced in the first instar nymph did not persist into the adult stage (adult longevity of 23.5±1.1 and 24.4±1.1 days for treated males and females compared with 25.7±1.0 and 20.6±1.1 days in the control groups), although untreated males lived longer than untreated females. Total mean longevity was increased from 38.8±0.1 to 43.4±1.0 days in treated females, but male longevity was not affected (40.9±0.9 and 42.2±1.1 days respectively). When male and female first instar nymphs were exposed at their ULT(50) of 41.8°C and allowed to mate on reaching adult, mean fecundity was reduced from 403.8±13.7 to 128.0±16.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT(50) (42.5°C), the three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated female produced 169.3±14.7, 249.6±21.3 and 233.4±17.2 eggs per female respectively, all significantly lower than the control. Exposure of nymphs and adults at their respective ULT(50) temperatures also significantly extended the time required for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat stress inhibited nymphal development, lowered fecundity and extended egg development time.
Collapse
|
19
|
Vorhees AS, Bradley TJ. Differences in critical thermal maxima and mortality across life stages of the mealworm beetle Tenebrio molitor. ACTA ACUST UNITED AC 2012; 215:2319-26. [PMID: 22675193 DOI: 10.1242/jeb.070342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thermal limits to activity profoundly affect the abundance and distribution of ectothermic animals. Upper thermal limits to activity are typically reported as the critical thermal maximum (CT(max)), the temperature at which activity becomes uncontrolled. Thermolimit respirometry is a new technique that allows CT(max) to be quantified in small animals, such as insects, as the point of spiracular failure by measuring CO(2) release from the animal as temperature increases. Although prior studies have reported a characteristic pattern of CO(2) release for insects during thermolimit respirometry trials, no studies have been carried out to determine the universality of this pattern across development, or at what point death occurs along this pattern. Here, we compared the CT(max) and patterns of CO(2) release among three life stages of a beetle species, Tenebrio molitor, and mapped heat death onto these patterns. Our study is the first to report distinct patterns of CO(2) release in different life stages of an insect species during thermolimit respirometry. Our results show that CT(max) was significantly higher in adult beetles than in either larvae or pupae (P<0.001) and, similarly, death occurred at higher temperatures in adults than in larvae and pupae. We also found that death during heating closely follows CT(max) in these animals, which confirms that measuring the loss of spiracular control with thermolimit respirometry successfully identifies the point of physiological limitation during heat stress.
Collapse
Affiliation(s)
- Ashley S Vorhees
- University of California, Ecology and Evolutionary Biology, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
20
|
Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci 2012; 367:1665-79. [PMID: 22566674 DOI: 10.1098/rstb.2012.0005] [Citation(s) in RCA: 835] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Ribeiro PL, Camacho A, Navas CA. Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf-cutting ants. PLoS One 2012; 7:e32083. [PMID: 22384147 PMCID: PMC3286443 DOI: 10.1371/journal.pone.0032083] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/19/2012] [Indexed: 11/19/2022] Open
Abstract
The thermal limits of individual animals were originally proposed as a link between animal physiology and thermal ecology. Although this link is valid in theory, the evaluation of physiological tolerances involves some problems that are the focus of this study. One rationale was that heating rates shall influence upper critical limits, so that ecological thermal limits need to consider experimental heating rates. In addition, if thermal limits are not surpassed in experiments, subsequent tests of the same individual should yield similar results or produce evidence of hardening. Finally, several non-controlled variables such as time under experimental conditions and procedures may affect results. To analyze these issues we conducted an integrative study of upper critical temperatures in a single species, the ant Atta sexdens rubropiosa, an animal model providing large numbers of individuals of diverse sizes but similar genetic makeup. Our specific aims were to test the 1) influence of heating rates in the experimental evaluation of upper critical temperature, 2) assumptions of absence of physical damage and reproducibility, and 3) sources of variance often overlooked in the thermal-limits literature; and 4) to introduce some experimental approaches that may help researchers to separate physiological and methodological issues. The upper thermal limits were influenced by both heating rates and body mass. In the latter case, the effect was physiological rather than methodological. The critical temperature decreased during subsequent tests performed on the same individual ants, even one week after the initial test. Accordingly, upper thermal limits may have been overestimated by our (and typical) protocols. Heating rates, body mass, procedures independent of temperature and other variables may affect the estimation of upper critical temperatures. Therefore, based on our data, we offer suggestions to enhance the quality of measurements, and offer recommendations to authors aiming to compile and analyze databases from the literature.
Collapse
Affiliation(s)
- Pedro Leite Ribeiro
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
22
|
Piyaphongkul J, Pritchard J, Bale J. Can tropical insects stand the heat? A case study with the brown planthopper Nilaparvata lugens (Stål). PLoS One 2012; 7:e29409. [PMID: 22253720 PMCID: PMC3257224 DOI: 10.1371/journal.pone.0029409] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/28/2011] [Indexed: 11/18/2022] Open
Abstract
The brown planthopper Nilaparvata lugens (Stål) is the most serious pest of rice across the world, especially in tropical climates. N. lugens nymphs and adults were exposed to high temperatures to determine their critical thermal maximum (CT(max)), heat coma temperature (HCT) and upper lethal temperature (ULT). Thermal tolerance values differed between developmental stages: nymphs were consistently less heat tolerant than adults. The mean (± SE) CT(max) of nymphs and adult females and males were 34.9±0.3, 37.0±0.2 and 37.4±0.2°C respectively, and for the HCT were 37.7±0.3, 43.5±0.4 and 42.0±0.4°C. The ULT₅₀ values (± SE) for nymphs and adults were 41.8±0.1 and 42.5±0.1°C respectively. The results indicate that nymphs of N. lugens are currently living at temperatures close to their upper thermal limits. Climate warming in tropical regions and occasional extreme high temperature events are likely to become important limiting factors affecting the survival and distribution of N. lugens.
Collapse
Affiliation(s)
- Jiranan Piyaphongkul
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jeremy Pritchard
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jeffrey Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
23
|
Weldon CW, Terblanche JS, Chown SL. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Santos M, Castañeda LE, Rezende EL. Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01908.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Mitchell KA, Hoffmann AA. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01666.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
TERBLANCHE JS, KLEYNHANS E. Phenotypic plasticity of desiccation resistance inGlossinapuparia: are there ecotype constraints on acclimation responses? J Evol Biol 2009; 22:1636-48. [DOI: 10.1111/j.1420-9101.2009.01784.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J. S. TERBLANCHE
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - E. KLEYNHANS
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Natural Variation in Drosophila Stressed Locomotion Meets or Exceeds Variation Caused by Hsp70 Mutation: Analysis of Behavior and Performance. Behav Genet 2009; 39:306-20. [DOI: 10.1007/s10519-009-9256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
28
|
Chown SL, Jumbam KR, Sørensen JG, Terblanche JS. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01481.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev Camb Philos Soc 2008; 83:339-55. [PMID: 18979595 DOI: 10.1111/j.1469-185x.2008.00046.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.
Collapse
Affiliation(s)
- Ken Bowler
- Department of Biological and Biomedical Sciences, University of Durham, Durham City, DH1 3LE, UK
| | | |
Collapse
|
30
|
Ragland GJ, Kingsolver JG. EVOLUTION OF THERMOTOLERANCE IN SEASONAL ENVIRONMENTS: THE EFFECTS OF ANNUAL TEMPERATURE VARIATION AND LIFE-HISTORY TIMING IN WYEOMYIA SMITHII. Evolution 2008; 62:1345-57. [DOI: 10.1111/j.1558-5646.2008.00367.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|