1
|
Penmetcha B, Ryan LA, Ogawa Y, Hart NS, Narendra A. Visual physiology of Australian stingless bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01740-x. [PMID: 40392294 DOI: 10.1007/s00359-025-01740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025]
Abstract
Stingless bees engage in a range of visually guided behaviours that require relatively high spatial resolution and contrast sensitivity. Although the eyes of honeybees, bumblebees, carpenter bees, and sweat bees have been studied extensively, there is limited knowledge of stingless bees. Here, we studied two sympatric Australian species, Tetragonula carbonaria and Austroplebeia australis, which are important crop pollinators. The bigger A. australis had more and larger ommatidial facets compared to T. carbonaria. Using pattern electroretinography, we showed that A. australis had higher contrast sensitivity (13.07) compared to T. carbonaria (5.99), but their spatial resolving power did not differ (0.53 cycles deg-1). We discuss these differences in visual physiology in the context of the distinct foraging behaviours of the two species.
Collapse
Affiliation(s)
- Bhavana Penmetcha
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Yuri Ogawa
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Ajay Narendra
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
2
|
Strang C, Muth F. Judgement bias may be explained by shifts in stimulus response curves. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221322. [PMID: 37035286 PMCID: PMC10073905 DOI: 10.1098/rsos.221322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Judgement bias, or 'optimism' and 'pessimism', has been demonstrated across many taxa, yet the cognitive mechanisms underlying this behaviour remain unclear. In an optimism paradigm, animals are trained to an association, and, if given a positive experience, behave more favourably towards 'ambiguous' stimuli. We tested whether this effect could be explained by changes to stimulus response gradients by giving bees a task where their response was tested across a wider gradient of stimuli than typically tested. In line with previous work, we found that bees given a positive experience demonstrated judgement bias, being more likely to visit ambiguous stimuli. However, bees were also less likely to visit a stimulus on the other side of the rewarded stimulus (S+), and as such had a shifted stimulus response curve, showing a diminished peak shift response. In two follow-up experiments we tested the hypothesis that our manipulation altered bees' stimulus response curves via changes to the peak shift response by reducing peak shift in controls. We found that, in support of our hypothesis, elimination of peak shift also eliminated differences between treatments. Our results point towards a cognitive explanation of 'optimistic' behaviour in non-human animals and offer a new paradigm for considering emotion-like states.
Collapse
Affiliation(s)
- Caroline Strang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- School of Behavioural and Social Sciences, Brescia University College, London, Ontario, Canada N6G 1H2
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Langridge KV, Wilke C, Riabinina O, Vorobyev M, Hempel de Ibarra N. Approach Direction Prior to Landing Explains Patterns of Colour Learning in Bees. Front Physiol 2021; 12:697886. [PMID: 34955870 PMCID: PMC8692860 DOI: 10.3389/fphys.2021.697886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Gaze direction is closely coupled with body movement in insects and other animals. If movement patterns interfere with the acquisition of visual information, insects can actively adjust them to seek relevant cues. Alternatively, where multiple visual cues are available, an insect's movements may influence how it perceives a scene. We show that the way a foraging bumblebee approaches a floral pattern could determine what it learns about the pattern. When trained to vertical bicoloured patterns, bumblebees consistently approached from below centre in order to land in the centre of the target where the reward was located. In subsequent tests, the bees preferred the colour of the lower half of the pattern that they predominantly faced during the approach and landing sequence. A predicted change of learning outcomes occurred when the contrast line was moved up or down off-centre: learned preferences again reflected relative frontal exposure to each colour during the approach, independent of the overall ratio of colours. This mechanism may underpin learning strategies in both simple and complex visual discriminations, highlighting that morphology and action patterns determines how animals solve sensory learning tasks. The deterministic effect of movement on visual learning may have substantially influenced the evolution of floral signals, particularly where plants depend on fine-scaled movements of pollinators on flowers.
Collapse
Affiliation(s)
- Keri V. Langridge
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | - Claudia Wilke
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
| | - Olena Riabinina
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Misha Vorobyev
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Natalie Hempel de Ibarra
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Mission impossible: honey bees adjust time allocation when facing an unsolvable task. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
K Namboodiri VM, Stuber GD. The learning of prospective and retrospective cognitive maps within neural circuits. Neuron 2021; 109:3552-3575. [PMID: 34678148 PMCID: PMC8809184 DOI: 10.1016/j.neuron.2021.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Brain circuits are thought to form a "cognitive map" to process and store statistical relationships in the environment. A cognitive map is commonly defined as a mental representation that describes environmental states (i.e., variables or events) and the relationship between these states. This process is commonly conceptualized as a prospective process, as it is based on the relationships between states in chronological order (e.g., does reward follow a given state?). In this perspective, we expand this concept on the basis of recent findings to postulate that in addition to a prospective map, the brain forms and uses a retrospective cognitive map (e.g., does a given state precede reward?). In doing so, we demonstrate that many neural signals and behaviors (e.g., habits) that seem inflexible and non-cognitive can result from retrospective cognitive maps. Together, we present a significant conceptual reframing of the neurobiological study of associative learning, memory, and decision making.
Collapse
Affiliation(s)
- Vijay Mohan K Namboodiri
- Department of Neurology, Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Howard SR, Prendergast K, Symonds MRE, Shrestha M, Dyer AG. Spontaneous choices for insect-pollinated flower shapes by wild non-eusocial halictid bees. J Exp Biol 2021; 224:271069. [PMID: 34318316 DOI: 10.1242/jeb.242457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
The majority of angiosperms require animal pollination for reproduction, and insects are the dominant group of animal pollinators. Bees are considered one of the most important and abundant insect pollinators. Research into bee behaviour and foraging decisions has typically centred on managed eusocial bee species, including Apis mellifera and Bombus terrestris. Non-eusocial bees are understudied with respect to foraging strategies and decision making, such as flower preferences. Understanding whether there are fundamental foraging strategies and preferences that are features of insect groups can provide key insights into the evolution of flower-pollinator co-evolution. In the current study, Lasioglossum (Chilalictus) lanarium and Lasioglossum (Parasphecodes) sp., two native Australian generalist halictid bees, were tested for flower shape preferences between native insect-pollinated and bird-pollinated flowers. Each bee was presented with achromatic images of either insect-pollinated or bird-pollinated flowers in a circular arena. Both native bee species demonstrated a significant preference for images of insect-pollinated flowers. These preferences are similar to those found in A. mellifera, suggesting that flower shape preference may be a deep-rooted evolutionary occurrence within bees. With growing interest in the sensory capabilities of non-eusocial bees as alternative pollinators, the current study also provides a valuable framework for further behavioural testing of such species.
Collapse
Affiliation(s)
- Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Kit Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Mani Shrestha
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.,Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia.,Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Different mechanisms underlie implicit visual statistical learning in honey bees and humans. Proc Natl Acad Sci U S A 2020; 117:25923-25934. [PMID: 32989162 DOI: 10.1073/pnas.1919387117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of developing complex internal representations of the environment is considered a crucial antecedent to the emergence of humans' higher cognitive functions. Yet it is an open question whether there is any fundamental difference in how humans and other good visual learner species naturally encode aspects of novel visual scenes. Using the same modified visual statistical learning paradigm and multielement stimuli, we investigated how human adults and honey bees (Apis mellifera) encode spontaneously, without dedicated training, various statistical properties of novel visual scenes. We found that, similarly to humans, honey bees automatically develop a complex internal representation of their visual environment that evolves with accumulation of new evidence even without a targeted reinforcement. In particular, with more experience, they shift from being sensitive to statistics of only elemental features of the scenes to relying on co-occurrence frequencies of elements while losing their sensitivity to elemental frequencies, but they never encode automatically the predictivity of elements. In contrast, humans involuntarily develop an internal representation that includes single-element and co-occurrence statistics, as well as information about the predictivity between elements. Importantly, capturing human visual learning results requires a probabilistic chunk-learning model, whereas a simple fragment-based memory-trace model that counts occurrence summary statistics is sufficient to replicate honey bees' learning behavior. Thus, humans' sophisticated encoding of sensory stimuli that provides intrinsic sensitivity to predictive information might be one of the fundamental prerequisites of developing higher cognitive abilities.
Collapse
|
8
|
Kheradmand B, Nieh JC. The Role of Landscapes and Landmarks in Bee Navigation: A Review. INSECTS 2019; 10:E342. [PMID: 31614833 PMCID: PMC6835465 DOI: 10.3390/insects10100342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
The ability of animals to explore landmarks in their environment is essential to their fitness. Landmarks are widely recognized to play a key role in navigation by providing information in multiple sensory modalities. However, what is a landmark? We propose that animals use a hierarchy of information based upon its utility and salience when an animal is in a given motivational state. Focusing on honeybees, we suggest that foragers choose landmarks based upon their relative uniqueness, conspicuousness, stability, and context. We also propose that it is useful to distinguish between landmarks that provide sensory input that changes ("near") or does not change ("far") as the receiver uses these landmarks to navigate. However, we recognize that this distinction occurs on a continuum and is not a clear-cut dichotomy. We review the rich literature on landmarks, focusing on recent studies that have illuminated our understanding of the kinds of information that bees use, how they use it, potential mechanisms, and future research directions.
Collapse
Affiliation(s)
- Bahram Kheradmand
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA.
| | - James C Nieh
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Little CM, Chapman TW, Hillier NK. Considerations for Insect Learning in Integrated Pest Management. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:6. [PMID: 31313814 PMCID: PMC6635889 DOI: 10.1093/jisesa/iez064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 06/10/2023]
Abstract
The past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.
Collapse
Affiliation(s)
- Catherine M Little
- Department of Biology, Acadia University, Wolfville, NS, Canada
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - Thomas W Chapman
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - N Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
10
|
Howard SR, Shrestha M, Schramme J, Garcia JE, Avarguès-Weber A, Greentree AD, Dyer AG. Honeybees prefer novel insect-pollinated flower shapes over bird-pollinated flower shapes. Curr Zool 2018; 65:457-465. [PMID: 31413718 PMCID: PMC6688580 DOI: 10.1093/cz/zoy095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
Plant–pollinator interactions have a fundamental influence on flower evolution. Flower color signals are frequently tuned to the visual capabilities of important pollinators such as either bees or birds, but far less is known about whether flower shape influences the choices of pollinators. We tested European honeybee Apis mellifera preferences using novel achromatic (gray-scale) images of 12 insect-pollinated and 12 bird-pollinated native Australian flowers in Germany; thus, avoiding influences of color, odor, or prior experience. Independent bees were tested with a number of parameterized images specifically designed to assess preferences for size, shape, brightness, or the number of flower-like shapes present in an image. We show that honeybees have a preference for visiting images of insect-pollinated flowers and such a preference is most-likely mediated by holistic information rather than by individual image parameters. Our results indicate angiosperms have evolved flower shapes which influence the choice behavior of important pollinators, and thus suggest spatial achromatic flower properties are an important part of visual signaling for plant–pollinator interactions.
Collapse
Affiliation(s)
- Scarlett R Howard
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mani Shrestha
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia.,Faculty of Information Technology, Monash University, Melbourne, Victoria 3800, Australia
| | - Juergen Schramme
- Institute of Developmental Biology and Neurobiology (iDn), Johannes Gutenberg University, Mainz 55122, Germany
| | - Jair E Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Andrew D Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Adrian G Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Howard SR, Avarguès-Weber A, Garcia J, Dyer AG. Free-flying honeybees extrapolate relational size rules to sort successively visited artificial flowers in a realistic foraging situation. Anim Cogn 2017; 20:627-638. [DOI: 10.1007/s10071-017-1086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023]
|
12
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Resources or landmarks: which factors drive homing success in Tetragonula carbonaria foraging in natural and disturbed landscapes? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:701-8. [DOI: 10.1007/s00359-016-1100-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
14
|
Hempel de Ibarra N, Langridge KV, Vorobyev M. More than colour attraction: behavioural functions of flower patterns. CURRENT OPINION IN INSECT SCIENCE 2015; 12:64-70. [PMID: 27064650 PMCID: PMC4804388 DOI: 10.1016/j.cois.2015.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landings or search for reward on the flower. From further away flower displays jointly form larger-sized patterns within the visual scene that will guide the insect's flight. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Keri V Langridge
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Misha Vorobyev
- University of Auckland, School of Optometry and Vision Science, Auckland, New Zealand
| |
Collapse
|
15
|
Stejskal K, Streinzer M, Dyer A, Paulus HF, Spaethe J. Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects. PLoS One 2015; 10:e0142971. [PMID: 26571020 PMCID: PMC4646623 DOI: 10.1371/journal.pone.0142971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy.
Collapse
Affiliation(s)
- Kerstin Stejskal
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- * E-mail:
| | - Martin Streinzer
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
- current address: Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Adrian Dyer
- Department of Physiology, Monash University, Clayton, Australia
- School of Media and Communication, RMIT University, Melbourne, Australia
| | - Hannes F. Paulus
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
16
|
Peak shift in honey bee olfactory learning. Anim Cogn 2014; 17:1177-86. [PMID: 24748464 DOI: 10.1007/s10071-014-0750-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/13/2013] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
If animals are trained with two similar stimuli such that one is rewarding (S+) and one punishing (S-), then following training animals show a greatest preference not for the S+, but for a novel stimulus that is slightly more different from the S- than the S+ is. This peak shift phenomenon has been widely reported for vertebrates and has recently been demonstrated for bumblebees and honey bees. To explore the nature of peak shift in invertebrates further, here we examined the properties of peak shift in honey bees trained in a free-flight olfactory learning assay. Hexanal and heptanol were mixed in different ratios to create a continuum of odour stimuli. Bees were trained to artificial flowers such that one odour mixture was rewarded with 2 molar sucrose (S+), and one punished with distasteful quinine (S-). After training, bees were given a non-rewarded preference test with five different mixtures of hexanal and heptanol. Following training bees' maximal preference was for an odour mixture slightly more distinct from the S- than the trained S+. This effect was not seen if bees were initially trained with two distinct odours, replicating the classic features of peak shift reported for vertebrates. We propose a conceptual model of how peak shift might occur in honey bees. We argue that peak shift does not require any higher level of processing than the known olfactory learning circuitry of the bee brain and suggest that peak shift is a very general feature of discrimination learning.
Collapse
|
17
|
Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Learning to navigate in a three-dimensional world: from bees to primates. Behav Brain Sci 2013; 36:550; discussion 571-87. [PMID: 24103603 DOI: 10.1017/s0140525x13000381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We discuss the idea that environmental factors influence the neural mechanisms that evolved to enable navigation, and propose that a capacity to learn different spatial relationship rules through experience may contribute to bicoded processing. Recent experiments show that free-flying bees can learn abstract spatial relationships, and we propose that this could be combined with optic flow processing to enable three-dimensional navigation.
Collapse
|
19
|
Abstract
Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as 'same', 'different', 'larger than', 'better than', among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as 'same', 'different', 'above/below of' or 'left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Research Centre for Animal Cognition, Université de Toulouse, UPS, , 118 Route de Narbonne, 31062 Toulouse Cedex 9, France, Research Centre for Animal Cognition, CNRS, , 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | | |
Collapse
|
20
|
Rodríguez-Gironés MA, Trillo A, Corcobado G. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees. PLoS One 2013; 8:e71551. [PMID: 23951186 PMCID: PMC3741178 DOI: 10.1371/journal.pone.0071551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices) were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.
Collapse
Affiliation(s)
- Miguel A Rodríguez-Gironés
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | | | | |
Collapse
|
21
|
Blue colour preference in honeybees distracts visual attention for learning closed shapes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:817-27. [PMID: 23918312 DOI: 10.1007/s00359-013-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/20/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.
Collapse
|
22
|
Honeybees can discriminate between Monet and Picasso paintings. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:45-55. [PMID: 23076444 DOI: 10.1007/s00359-012-0767-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
Honeybees (Apis mellifera) have remarkable visual learning and discrimination abilities that extend beyond learning simple colours, shapes or patterns. They can discriminate landscape scenes, types of flowers, and even human faces. This suggests that in spite of their small brain, honeybees have a highly developed capacity for processing complex visual information, comparable in many respects to vertebrates. Here, we investigated whether this capacity extends to complex images that humans distinguish on the basis of artistic style: Impressionist paintings by Monet and Cubist paintings by Picasso. We show that honeybees learned to simultaneously discriminate between five different Monet and Picasso paintings, and that they do not rely on luminance, colour, or spatial frequency information for discrimination. When presented with novel paintings of the same style, the bees even demonstrated some ability to generalize. This suggests that honeybees are able to discriminate Monet paintings from Picasso ones by extracting and learning the characteristic visual information inherent in each painting style. Our study further suggests that discrimination of artistic styles is not a higher cognitive function that is unique to humans, but simply due to the capacity of animals-from insects to humans-to extract and categorize the visual characteristics of complex images.
Collapse
|
23
|
Dyer AG. The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. ACTA ACUST UNITED AC 2012; 215:387-95. [PMID: 22246247 DOI: 10.1242/jeb.038190] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important modalities for the remote perception of biologically important stimuli. Insects like honeybees and bumblebees use their colour and spatial vision to solve tasks, such as navigation, or to recognise rewarding flowers during foraging. Bee vision is one of the most intensively studied animal visual systems, and several models have been developed to describe its function. These models have largely assumed that bee vision is determined by mechanistic hard-wired circuits, with little or no consideration for behavioural plasticity or cognitive factors. However, recent work on both bee colour vision and spatial vision suggests that cognitive factors are indeed a very significant factor in determining what a bee sees. Individual bumblebees trade-off speed for accuracy, and will decide on which criteria to prioritise depending upon contextual information. With continued visual experience, honeybees can learn to use non-elemental processing, including configural mechanisms and rule learning, and can access top-down information to enhance learning of sophisticated, novel visual tasks. Honeybees can learn delayed-matching-to-sample tasks and the rules governing this decision making, and even transfer learned rules between different sensory modalities. Finally, bees can learn complex categorisation tasks and display numerical processing abilities for numbers up to and including four. Taken together, this evidence suggests that bees do have a capacity for sophisticated visual behaviours that fit a definition for cognition, and thus simple elemental models of bee vision need to take account of how a variety of factors may influence the type of results one may gain from animal behaviour experiments.
Collapse
Affiliation(s)
- Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne 3001, Australia.
| |
Collapse
|
24
|
Dyer AG, Griffiths DW. Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 2012; 215:397-404. [DOI: 10.1242/jeb.060954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Visual perception is a primary modality for interacting with complex environments. Recent work has shown that the brain and visual system of the honeybee is able, in some cases, to learn complex spatial relationships, while in other cases, bee vision is relatively rudimentary and based upon simple elemental-type visual processing. In the present study, we test the ability of honeybees to learn 4-bar asymmetric patterns in a Y-maze with aversive–appetitive differential conditioning. In Experiment 1, a group of bees were trained at a small visual angle of 50 deg by constraining individuals to the decision chamber within the Y-maze. Bees learned this task, and were able to solve the task even in the presence of background noise. However, these bees failed to solve the task when the stimuli were presented at a novel visual angle of 100 deg. In Experiment 2, a separate group of bees were trained to sets of 4-bar asymmetric patterns that excluded retinotopic matching and, in this case, bees learned the configural rule describing stimuli at a visual angle of approximately 50 deg, and this allowed the bees to solve the task when the stimuli were presented at a novel vision angle of 100 deg. This shows that the bee brain contains multiple mechanisms for pattern recognition, and what a bee sees is very dependent upon the specific experience that it receives. These multiple mechanisms would allow bees to interact with complex environments to solve tasks like recognising landmarks at variable distances or quickly discriminating between rewarding/non-rewarding flowers at reasonable constant visual angles.
Collapse
Affiliation(s)
- Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne 3001, Australia
- Department of Physiology, Monash University, Clayton 3800, Australia
| | - David W. Griffiths
- Psychological Sciences, University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
25
|
Henry M, Fröchen M, Maillet-Mezeray J, Breyne E, Allier F, Odoux JF, Decourtye A. Spatial autocorrelation in honeybee foraging activity reveals optimal focus scale for predicting agro-environmental scheme efficiency. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2011.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Leonard AS, Dornhaus A, Papaj DR. Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. ACTA ACUST UNITED AC 2011; 214:113-21. [PMID: 21147975 DOI: 10.1242/jeb.047407] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal. Specifically, we asked whether one component of the floral display, scent, improved a bee's certainty about the value of another component, color hue. We first trained two groups of bumble bees (Bombus impatiens Cresson) to discriminate between rewarding and unrewarding artificial flowers of slightly different hues in the presence vs absence of scent. In a test phase, we presented these bees with a gradient of floral hues and assessed their ability to identify the hue rewarded during training. We interpreted the extent to which bees' preferences were biased away from the unrewarding hue ('peak shift') as an indicator of uncertainty in color discrimination. Our data show that the presence of an olfactory signal reduces uncertainty regarding color: not only was color learning facilitated on scented flowers but also bees showed a lower amount of peak shift in the presence of scent. We explore potential mechanisms by which scent might reduce uncertainty about color, and discuss the broader significance of our results for our understanding of signal evolution.
Collapse
Affiliation(s)
- Anne S Leonard
- Center for Insect Science, Department of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell Street, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
27
|
Abstract
Visual learning admits different levels of complexity, from the formation of a simple associative link between a visual stimulus and its outcome, to more sophisticated performances, such as object categorization or rules learning, that allow flexible responses beyond simple forms of learning. Not surprisingly, higher-order forms of visual learning have been studied primarily in vertebrates with larger brains, while simple visual learning has been the focus in animals with small brains such as insects. This dichotomy has recently changed as studies on visual learning in social insects have shown that these animals can master extremely sophisticated tasks. Here we review a spectrum of visual learning forms in social insects, from color and pattern learning, visual attention, and top-down image recognition, to interindividual recognition, conditional discrimination, category learning, and rule extraction. We analyze the necessity and sufficiency of simple associations to account for complex visual learning in Hymenoptera and discuss possible neural mechanisms underlying these visual performances.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Université de Toulouse, F-31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
28
|
Avarguès-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG. Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 2010; 5:e15370. [PMID: 20976170 PMCID: PMC2955543 DOI: 10.1371/journal.pone.0015370] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/30/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning), whilst if the same target is learnt in isolation (absolute conditioning), discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS We show that the presence of a highly concentrated quinine solution (60 mM) acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, Toulouse, France
| | | | | | | |
Collapse
|
29
|
Streinzer M, Ellis T, Paulus HF, Spaethe J. Visual discrimination between two sexually deceptive Ophrys species by a bee pollinator. ARTHROPOD-PLANT INTERACTIONS 2010; 4:141-148. [PMID: 21516265 PMCID: PMC3080657 DOI: 10.1007/s11829-010-9093-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/21/2010] [Indexed: 05/07/2023]
Abstract
Almost all species of the orchid genus Ophrys are pollinated by sexual deception. The orchids mimic the sex pheromone of receptive female insects, mainly hymenopterans, in order to attract males seeking to copulate. Most Ophrys species have achromatic flowers, but some exhibit a coloured perianth and a bright, conspicuous labellum pattern. We recently showed that the pink perianth of Ophrys heldreichii flowers increases detectability by its pollinator, males of the long-horned bee Eucera berlandi. Here we tested the hypothesis that the bright, complex labellum pattern mimics the female of the pollinator to increase attractiveness toward males. In a dual-choice test we offered E. berlandi males an O. heldreichii flower and a flower from O. dictynnae, which also exhibits a pinkish perianth but no conspicuous labellum pattern. Both flowers were housed in UV-transmitting acrylic glass boxes to exclude olfactory signals. Males significantly preferred O. heldreichii to O. dictynnae flowers. In a second experiment, we replaced the perianth of both flowers with identical artificial perianths made from pink card, so that only the labellum differed between the two flower stimuli. Males then chose between both stimuli at random, suggesting that the presence of a labellum pattern does not affect their choice. Spectral measurements revealed higher colour contrast with the background of the perianth of O. heldreichii compared to O. dictynnae, but no difference in green receptor-specific contrast or brightness. Our results show that male choice is guided by the chromatic contrast of the perianth during the initial flower approach but is not affected by the presence of a labellum pattern. Instead, we hypothesise that the labellum pattern is involved in aversive learning during post-copulatory behaviour and used by the orchid as a strategy to increase outcrossing.
Collapse
Affiliation(s)
- M Streinzer
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria,
| | | | | | | |
Collapse
|
30
|
Avarguès-Weber A, Portelli G, Benard J, Dyer A, Giurfa M. Configural processing enables discrimination and categorization of face-like stimuli in honeybees. ACTA ACUST UNITED AC 2010; 213:593-601. [PMID: 20118310 DOI: 10.1242/jeb.039263] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied whether honeybees can distinguish face-like configurations by using standardized stimuli commonly employed in primate and human visual research. Furthermore, we studied whether, irrespective of their capacity to distinguish between face-like stimuli, bees learn to classify visual stimuli built up of the same elements in face-like versus non-face-like categories. We showed that bees succeeded in discriminating both face-like and non-face-like stimuli and categorized appropriately novel stimuli in these two classes. To this end, they used configural information and not just isolated features or low-level cues. Bees looked for a specific configuration in which each feature had to be located in an appropriate spatial relationship with respect to the others, thus showing sensitivity for first-order relationships between features. Although faces are biologically irrelevant stimuli for bees, the fact that they were able to integrate visual features into complex representations suggests that face-like stimulus categorization can occur even in the absence of brain regions specialized in face processing.
Collapse
Affiliation(s)
- A Avarguès-Weber
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
Although the numerical abilities of many vertebrate species have been investigated in the scientific literature, there are few convincing accounts of invertebrate numerical competence. Honeybees, Apis mellifera, by virtue of their other impressive cognitive feats, are a prime candidate for investigations of this nature. We therefore used the well-established delayed match-to-sample paradigm, to test the limits of honeybees' ability to match two visual patterns solely on the basis of the shared number of elements in the two patterns. Using a y-maze, we found that bees can not only differentiate between patterns containing two and three elements, but can also use this prior knowledge to differentiate three from four, without any additional training. However, bees trained on the two versus three task could not distinguish between higher numbers, such as four versus five, four versus six, or five versus six. Control experiments confirmed that the bees were not using cues such as the colour of the exact configuration of the visual elements, the combined area or edge length of the elements, or illusory contours formed by the elements. To our knowledge, this is the first report of number-based visual generalisation by an invertebrate.
Collapse
|
33
|
Insect brains use image interpolation mechanisms to recognise rotated objects. PLoS One 2008; 3:e4086. [PMID: 19116650 PMCID: PMC2605253 DOI: 10.1371/journal.pone.0004086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/28/2008] [Indexed: 11/19/2022] Open
Abstract
Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces), but can learn to recognise novel views of stimuli by interpolating between or 'averaging' views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems.
Collapse
|
34
|
Phillips K. SEEING THE TREE FROM THE WOODS. J Exp Biol 2008. [DOI: 10.1242/jeb.018473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|