1
|
Adedara IA, Mohammed KA, Da-Silva OF, Salaudeen FA, Gonçalves FL, Rosemberg DB, Aschner M, Rocha JBT, Farombi EO. Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants. ENVIRONMENTAL ADVANCES 2022; 8:100195. [PMID: 35992224 PMCID: PMC9390120 DOI: 10.1016/j.envadv.2022.100195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neurotoxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomotoxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharmaceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
- Corresponding author. (I.A. Adedara)
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F. Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faoziyat A. Salaudeen
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Falco L.S. Gonçalves
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Ilijin L, Mrdaković M, Todorović D, Vlahović M, Grčić A, Filipović A, Perić-Mataruga V. Biological effects of chronic exposure of Blaptica dubia (Blattodea: Blaberidae) nymphs to static and extremely low frequency magnetic fields. AN ACAD BRAS CIENC 2021; 93:e20190118. [PMID: 34105607 DOI: 10.1590/0001-3765202120190118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, we analyzed the effects of chronic exposure (5 months) to static magnetic field (110 mT; SMF) and extremely low frequency magnetic field (ELF MF; 10 mT, 50 Hz) on Blaptica dubia nymphs. We have examined acetylcholinesterase (AChE) activity and heat shock protein 70 (HSP70) level, two sensitive biomarkers of stress in terrestrial insects. Relative growth rate (RGR), as a life history trait, was estimated. AChE activity was determined spectrophotometrically and HSP70 levels were quantified using indirect non-competitive ELISA and Western blotting. Calculated RGR was significantly changed upon exposure to both types of ambiental MFs. The effects of chronic exposure of B. dubia nymphs to SMF and ELF MF (50 Hz) were observed as decreased activity of AChE. The increased level of HSP70 was present only after exposure to SMF. The strength of ELF MF was most likely below the energy level needed to induce the expression of this stress protein. Different patterns of the expression of two HSP70 isoforms, where isoform 2 was sensitive only to SMF, are most likely a possibly switch - off in the expression of constitutive and/or inducible HSP70 isoforms.
Collapse
Affiliation(s)
- Larisa Ilijin
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Marija Mrdaković
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Dajana Todorović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Milena Vlahović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Anja Grčić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Aleksandra Filipović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Vesna Perić-Mataruga
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| |
Collapse
|
3
|
Lee KS, Dumke R, Paterek T. Numerical tests of magnetoreception models assisted with behavioral experiments on American cockroaches. Sci Rep 2021; 11:12221. [PMID: 34108599 PMCID: PMC8190300 DOI: 10.1038/s41598-021-91815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Many animals display sensitivity to external magnetic field, but it is only in the simplest organisms that the sensing mechanism is understood. Here we report on behavioural experiments where American cockroaches (Periplaneta americana) were subjected to periodically rotated external magnetic fields with a period of 10 min. The insects show increased activity when placed in a periodically rotated Earth-strength field, whereas this effect is diminished in a twelve times stronger periodically rotated field. We analyse established models of magnetoreception, the magnetite model and the radical pair model, in light of this adaptation result. A broad class of magnetite models, based on single-domain particles found in insects and assumption that better alignment of magnetic grains towards the external field yields better sensing and higher insect activity, is shown to be excluded by the measured data. The radical-pair model explains the data if we assume that contrast in the chemical yield on the order of one in a thousand is perceivable by the animal, and that there also exists a threshold value for detection, attained in an Earth-strength field but not in the stronger field.
Collapse
Affiliation(s)
- Kai Sheng Lee
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Rainer Dumke
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.4280.e0000 0001 2180 6431Centre for Quantum Technologies, National University of Singapore, Singapore, 117543 Singapore
| | - Tomasz Paterek
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.8585.00000 0001 2370 4076Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Johnsen S, Lohmann KJ, Warrant EJ. Animal navigation: a noisy magnetic sense? ACTA ACUST UNITED AC 2020; 223:223/18/jeb164921. [PMID: 32967977 DOI: 10.1242/jeb.164921] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diverse organisms use Earth's magnetic field as a cue in orientation and navigation. Nevertheless, eliciting magnetic orientation responses reliably, either in laboratory or natural settings, is often difficult. Many species appear to preferentially exploit non-magnetic cues if they are available, suggesting that the magnetic sense often serves as a redundant or 'backup' source of information. This raises an interesting paradox: Earth's magnetic field appears to be more pervasive and reliable than almost any other navigational cue. Why then do animals not rely almost exclusively on the geomagnetic field, while ignoring or downplaying other cues? Here, we explore a possible explanation: that the magnetic sense of animals is 'noisy', in that the magnetic signal is small relative to thermal and receptor noise. Magnetic receptors are thus unable to instantaneously acquire magnetic information that is highly precise or accurate. We speculate that extensive time-averaging and/or other higher-order neural processing of magnetic information is required, rendering the magnetic sense inefficient relative to alternative cues that can be detected faster and with less effort. This interpretation is consistent with experimental results suggesting a long time course for magnetic compass and map responses in some animals. Despite possible limitations, magnetoreception may be maintained by natural selection because the geomagnetic field is sometimes the only source of directional and/or positional information available.
Collapse
Affiliation(s)
- Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Kenneth J Lohmann
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric J Warrant
- Lund Vision Group, Biology Department, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
5
|
Abstract
Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. A fundamental understanding of the effects of nanoparticles (NPs) and their interactions with biomolecules and organismal systems has yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.
Collapse
|
6
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Filipović A, Grčić A, Perić-Mataruga V. Long-term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: effects on antioxidant biomarkers and nymphal gut mass. Int J Radiat Biol 2019; 95:1185-1193. [PMID: 30822251 DOI: 10.1080/09553002.2019.1589017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: The main goal of this study was to analyze the long-term effects of static (SMF) and extremely low-frequency magnetic field (ELF MF) on nymphal gut mass and antioxidant biomarkers in this tissue of cockroach Blaptica dubia. Materials and methods: One-month-old nymphs were exposed to magnetic field (MF) for 5 months in three experimental groups: control, exposure to SMF (110 mT) and exposure to ELF MF (50 Hz, 10 mT). Results: The gut masses of the MF groups were significantly lower when compared to control. Superoxide dismutase (SOD) and catalase (CAT) activities were markedly higher than for the control and the differences between the MF groups were statistically significant only for SOD. The applied MF had no effect on total glutathione (GSH) content. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly lower in both MF groups in comparison to the control. There was a significant difference between MF groups for GR activity. Principal Component Analysis (PCA) showed that CAT and GST were the main factors contributing to the differentiation of the control group from the treated experimental groups along PCA 1, and SOD and GR along PCA 2. PCA revealed clear separation between experimental groups depends on antioxidant biomarker response. Conclusion: The applied magnetic fields could be considered a potential stressor influencing gut mass, as well as examined antioxidative biomarkers.
Collapse
Affiliation(s)
- Dajana Todorović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Larisa Ilijin
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Marija Mrdaković
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Milena Vlahović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Aleksandra Filipović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Anja Grčić
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Vesna Perić-Mataruga
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
7
|
Slaby P, Bartos P, Karas J, Netusil R, Tomanova K, Vacha M. How Swift Is Cry-Mediated Magnetoreception? Conditioning in an American Cockroach Shows Sub-second Response. Front Behav Neurosci 2018; 12:107. [PMID: 29892217 PMCID: PMC5985609 DOI: 10.3389/fnbeh.2018.00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
Diverse animal species perceive Earth’s magnetism and use their magnetic sense to orientate and navigate. Even non-migrating insects such as fruit flies and cockroaches have been shown to exploit the flavoprotein Cryptochrome (Cry) as a likely magnetic direction sensor; however, the transduction mechanism remains unknown. In order to work as a system to steer insect flight or control locomotion, the magnetic sense must transmit the signal from the receptor cells to the brain at a similar speed to other sensory systems, presumably within hundreds of milliseconds or less. So far, no electrophysiological or behavioral study has tackled the problem of the transduction delay in case of Cry-mediated magnetoreception specifically. Here, using a novel aversive conditioning assay on an American cockroach, we show that magnetic transduction is executed within a sub-second time span. A series of inter-stimulus intervals between conditioned stimuli (magnetic North rotation) and unconditioned aversive stimuli (hot air flow) provides original evidence that Cry-mediated magnetic transduction is sufficiently rapid to mediate insect orientation.
Collapse
Affiliation(s)
- Pavel Slaby
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Premysl Bartos
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Jakub Karas
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Radek Netusil
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Kateřina Tomanova
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Martin Vacha
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Kong LJ, Crepaz H, Górecka A, Urbanek A, Dumke R, Paterek T. In-vivo biomagnetic characterisation of the American cockroach. Sci Rep 2018; 8:5140. [PMID: 29572509 PMCID: PMC5865160 DOI: 10.1038/s41598-018-23005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
We present a quantitative method, utilising a highly sensitive quantum sensor, that extends applicability of magnetorelaxometry to biological samples at physiological temperature. The observed magnetic fields allow for non-invasive determination of physical properties of magnetic materials and their surrounding environment inside the specimen. The method is applied to American cockroaches and reveals magnetic deposits with strikingly different behaviour in alive and dead insects. We discuss consequences of this finding to cockroach magneto-reception. To our knowledge, this work represents the first characterisation of the magnetisation dynamics in live insects and helps to connect results from behavioural experiments on insects in magnetic fields with characterisation of magnetic materials in their corpses.
Collapse
Affiliation(s)
- Ling-Jun Kong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China
| | - Herbert Crepaz
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore
| | - Agnieszka Górecka
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,School of Physics and Astronomy, Monash University, Melbourne, 3800, Australia
| | - Aleksandra Urbanek
- Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Rainer Dumke
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore
| | - Tomasz Paterek
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore. .,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Myklatun A, Lauri A, Eder SHK, Cappetta M, Shcherbakov D, Wurst W, Winklhofer M, Westmeyer GG. Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. Nat Commun 2018; 9:802. [PMID: 29476093 PMCID: PMC5824813 DOI: 10.1038/s41467-018-03090-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/18/2018] [Indexed: 11/12/2022] Open
Abstract
An impediment to a mechanistic understanding of how some species sense the geomagnetic field ("magnetoreception") is the lack of vertebrate genetic models that exhibit well-characterized magnetoreceptive behavior and are amenable to whole-brain analysis. We investigated the genetic model organisms zebrafish and medaka, whose young stages are transparent and optically accessible. In an unfamiliar environment, adult fish orient according to the directional change of a magnetic field even in darkness. To enable experiments also in juveniles, we applied slowly oscillating magnetic fields, aimed at generating conflicting sensory inputs during exploratory behavior. Medaka (but not zebrafish) increase their locomotor activity in this assay. Complementary brain activity mapping reveals neuronal activation in the lateral hindbrain during magnetic stimulation. These comparative data support magnetoreception in teleosts, provide evidence for a light-independent mechanism, and demonstrate the usefulness of zebrafish and medaka as genetic vertebrate models for studying the biophysical and neuronal mechanisms underlying magnetoreception.
Collapse
Affiliation(s)
- Ahne Myklatun
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Department of Nuclear Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Antonella Lauri
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Department of Nuclear Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Stephan H K Eder
- Department of Earth- and Environmental Sciences Section Geophysics, Ludwig Maximilian University of Munich, Theresienstrasse 41, 80333, Munich, Germany
| | - Michele Cappetta
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Department of Nuclear Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Denis Shcherbakov
- Institute of Zoology 220, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, D-26111, Germany
| | - Gil G Westmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Department of Nuclear Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| |
Collapse
|
10
|
Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc Biol Sci 2018; 284:rspb.2016.2873. [PMID: 28330921 PMCID: PMC5378088 DOI: 10.1098/rspb.2016.2873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen.
Collapse
Affiliation(s)
- Veronika Lambinet
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharina Reigl
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Surath Gomis
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
11
|
Hofman J, Maher BA, Muxworthy AR, Wuyts K, Castanheiro A, Samson R. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6648-6664. [PMID: 28541679 DOI: 10.1021/acs.est.7b00832] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NOx, trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Collapse
Affiliation(s)
- Jelle Hofman
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Barbara A Maher
- Centre for Environmental Magnetism & Paleomagnetism, Lancaster Environment Centre, University of Lancaster , Lancaster LA1 4YW, United Kingdom
| | - Adrian R Muxworthy
- Natural Magnetism Group, Department of Earth Science and Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Karen Wuyts
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
12
|
Wyszkowska J, Shepherd S, Sharkh S, Jackson CW, Newland PL. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci Rep 2016; 6:36413. [PMID: 27808167 PMCID: PMC5093409 DOI: 10.1038/srep36413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | - Suleiman Sharkh
- Engineering Sciences, University of Southampton, Southampton, UK
| | | | - Philip L Newland
- Centre for Biological Sciences, University of Southampton, Southampton
| |
Collapse
|
13
|
Magnetic Sensing through the Abdomen of the Honey bee. Sci Rep 2016; 6:23657. [PMID: 27005398 PMCID: PMC4804335 DOI: 10.1038/srep23657] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022] Open
Abstract
Honey bees have the ability to detect the Earth’s magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception.
Collapse
|
14
|
Abstract
The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector. In this study, we used gene silencing and a directional MF to show that mammalian-like Cry2 is necessary for a genuine directional response to periodic rotations of the GMF vector in two insect species. Longer wavelengths of light required higher photon fluxes for a detectable behavioral response, and a sharp detection border was present in the cyan/green spectral region. Both observations are consistent with involvement of the FADox, FAD(•-) and FADH(-) redox forms of flavin. The response was lost upon covering the eyes, demonstrating that the signal is perceived in the eye region. Immunohistochemical staining detected Cry2 in the hemispherical layer of laminal glia cells underneath the retina. Together, these findings identified the eye-localized Cry2 as an indispensable component and a likely photoreceptor of the directional GMF response. Our study is thus a clear step forward in deciphering the in vivo effects of GMF and supports the interaction of underlying mechanism with the visual system.
Collapse
|
15
|
Tian LX, Pan YX, Metzner W, Zhang JS, Zhang BF. Bats respond to very weak magnetic fields. PLoS One 2015; 10:e0123205. [PMID: 25922944 PMCID: PMC4414586 DOI: 10.1371/journal.pone.0123205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
Collapse
Affiliation(s)
- Lan-Xiang Tian
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
| | - Yong-Xin Pan
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Walter Metzner
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Jin-Shuo Zhang
- National Zoological Museum, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing-Fang Zhang
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Wan GJ, Jiang SL, Zhao ZC, Xu JJ, Tao XR, Sword GA, Gao YB, Pan WD, Chen FJ. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:7-15. [PMID: 24995837 DOI: 10.1016/j.jinsphys.2014.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Magnetic fields markedly affect the growth and development of many species of organisms potentially due to cryptochrome and endogenous presence of magnetic materials. Sensitivity to magnetic fields can also be involved in geomagnetic orientation by some long-distance migratory insects. In this study, near-zero magnetic fields (NZMF) in relation to normal geomagnetic fields (GMF) were setup using the Hypomagnetic Field Space System (HMFs) to investigate the effects of magnetic fields on the growth, development and reproduction of two species of migratory planthopper, the small brown planthopper (abbr. SBPH), Laodelphax striatellus, and the brown planthopper (abbr. BPH), Nilaparvata lugens. Exposure of both L. striatellus and N. lugens to NZMF delayed egg and nymphal developmental durations and decreased adult weight and female fecundity. The 1st-5th instars of SBPH and BPH showed different responses to NZMF. The 4th instar was significantly affected by NZMF, especially for BPH males, in which NZMF exposure reduced the difference in development duration between females and males. Compared with GMF, the vitellogenin transcript levels of newly molted female adults and the number of eggs per female were significantly reduced in both planthopper species, indicating a negative effect on fertility under NZMF. Our findings provided experimental evidence that NZMF negatively affected the growth and development of SBPH and BPH, with particularly strong effects on reproduction.
Collapse
Affiliation(s)
- Gui-jun Wan
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shou-lin Jiang
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-chao Zhao
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-jing Xu
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-rong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Yue-bo Gao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Wei-dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fa-jun Chen
- Laboratory of Insect-Information Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Identification of differentially expressed genes in American cockroach ovaries and testes by suppression subtractive hybridization and the prediction of its miRNAs. Mol Genet Genomics 2013; 288:627-38. [PMID: 23996145 DOI: 10.1007/s00438-013-0777-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Studies on the cockroach have contributed to our understanding of several important developmental processes, especially those that can be easily studied in the embryo. However, our knowledge on late events such as gonad differentiation in the cockroach is still limited. The major aim of the present study was to identify sex-specific genes between adult female and male Periplaneta americana. Two cDNA libraries were constructed using the suppression subtractive hybridization method; a total of 433 and 599 unique sequences were obtained from the forward library and the reverse library, respectively, by cluster assembly, and sequence alignment of 1,032 expressed sequence tags. The analysis of the differentially expressed gene functions allowed these genes to be categorized into three groups: biological process, molecular function, and cellular component. The differentially expressed genes were suggested to be related to the development of the gonads of P. americana. Twelve differentially expressed genes were randomly selected and verified using relative quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, by adopting a range of filtering criteria, we predicted two potential microRNA sequences for P. americana, pam-miR100-3p and pam-miR7. To confirm the expression of potential microRNAs (miRNAs) in American cockroach, a qRT-PCR approach was also employed. The data presented here offer the insights into the molecular foundation of sex differences in American cockroach, and the first report for the miRNAs in this species. In addition, the results can be used as a reference for unraveling candidate genes associated with the sex and reproduction of cockroaches.
Collapse
|
18
|
Giraldo D, Hernández C, Molina J. In search of magnetosensitivity and ferromagnetic particles in Rhodnius prolixus: behavioral studies and vibrating sample magnetometry. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:345-350. [PMID: 23291498 DOI: 10.1016/j.jinsphys.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Magnetoreception is a sensory mechanism with wide phylogenetic distribution, which many organisms use for navigation and orientation. Radical pair reactions and the use of magnetic particles have been proposed as mechanisms for magnetosensitivity in terrestrial animals. Magnetosensitivity and the presence of a ferromagnetic material were tested in the hematophagous bug Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) vector of Chagas disease in Colombia and Venezuela. R. prolixus is well known in both countries for its active dispersal that allows flow of individuals from sylvatic to domestic environments. Behavioral experiments quantifying the number of body rotations and quadrant changes in a Petri dish were carried out, applying 1 mT artificial field in a constant direction for 45 min and rotated 180° every 5 min for 45 min. In addition, magnetite presence in the abdomens of Apis mellifera (positive control) and the bodies of R. prolixus was tested using a vibrating sample magnetometer (VSM). No differences in the number of body rotations and quadrant changes were found in R. prolixus with and without the presence of an artificial magnetic field. Results obtained with the VSM indicate presence of ferromagnetic material (hysteresis loop) in A. mellifera abdomens and absence of ferromagnetic material in R. prolixus bodies. Both VSM and behavioral results suggest that magnetosensitivity by a ferromagnetic hypothesis is not present in R. prolixus. Finally, our results indicate that the VSM magnetometer is a sensitive technique for detecting ferromagnetic material in insect tissues.
Collapse
Affiliation(s)
- Diego Giraldo
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, A.A. 4976 Carrera 1a # 18A-10, Bogotá, Colombia
| | | | | |
Collapse
|
19
|
Todorović D, Marković T, Prolić Z, Mihajlović S, Rauš S, Nikolić L, Janać B. The influence of static magnetic field (50 mT) on development and motor behaviour ofTenebrio(Insecta, Coleoptera). Int J Radiat Biol 2012; 89:44-50. [DOI: 10.3109/09553002.2012.715786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Hellinger J, Hoffmann KP. Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:593-605. [PMID: 22592858 DOI: 10.1007/s00359-012-0732-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we demonstrate the role of the trigeminal system in the perception process of different magnetic field parameters by heartbeat conditioning, i.e. a significantly longer interval between two consecutive heartbeats after magnetic stimulus onset in the salmonid fish Oncorhynchus mykiss. The electrocardiogram was recorded with subcutaneous silver wire electrodes in freely swimming fish. Inactivation of the ophthalmic branch of the trigeminal nerve by local anaesthesia revealed its role in the perception of intensity/inclination of the magnetic field by abolishing the conditioned response (CR). In contrast, experiments with 90° direction shifts clearly showed the normal conditioning effect during trigeminal inactivation. In experiments under red light and in darkness, CR occurred in case of both the intensity/inclination stimulation and 90° direction shifts, respectively. With regard to the data obtained, we propose the trigeminal system to perceive the intensity/inclination of the magnetic field in rainbow trouts and suggest the existence of another light-independent sensory structure that enables fish to detect the magnetic field direction.
Collapse
Affiliation(s)
- Jens Hellinger
- Lehrstuhl für Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
21
|
Zhou Y, Rocha A, Sanchez CJ, Liang H. Assessment of toxicity of nanoparticles using insects as biological models. Methods Mol Biol 2012; 906:423-433. [PMID: 22791454 DOI: 10.1007/978-1-61779-953-2_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. The fundamental understanding in effects of nanoparticles (NPs) on and their interactions with biomolecules and organismal systems have yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We will then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.
Collapse
Affiliation(s)
- Yan Zhou
- Materials Science and Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
22
|
Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS One 2010; 5:e9231. [PMID: 20169083 PMCID: PMC2821931 DOI: 10.1371/journal.pone.0009231] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula) and a non-migratory bird, the domestic chicken (Gallus gallus). In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III) may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.
Collapse
Affiliation(s)
- Gerald Falkenberg
- Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Gerta Fleissner
- Institut für Zellbiologie und Neurowissenschaften, Goethe-Universität, Frankfurt a. M., Germany
| | - Kirsten Schuchardt
- Institut für Zellbiologie und Neurowissenschaften, Goethe-Universität, Frankfurt a. M., Germany
| | - Markus Kuehbacher
- Abt. Elementanalytik, Helmholtz Centre Berlin for Materials and Energy, Berlin, Germany
| | - Peter Thalau
- Institut für Zellbiologie und Neurowissenschaften, Goethe-Universität, Frankfurt a. M., Germany
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky-Universität, Oldenburg, Germany
| | - Dominik Heyers
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky-Universität, Oldenburg, Germany
| | - Gerd Wellenreuther
- Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Guenther Fleissner
- Institut für Zellbiologie und Neurowissenschaften, Goethe-Universität, Frankfurt a. M., Germany
| |
Collapse
|
23
|
Vácha M, Puzová T, Kvícalová M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. ACTA ACUST UNITED AC 2010; 212:3473-7. [PMID: 19837889 DOI: 10.1242/jeb.028670] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sense that allows birds to orient themselves by the Earth's magnetic field can be disabled by an oscillating magnetic field whose intensity is just a fraction of the geomagnetic field intensity and whose oscillations fall into the medium or high frequency radio wave bands. This remarkable phenomenon points very clearly at one of two existing alternative magnetoreception mechanisms in terrestrial animals, i.e. the mechanism based on the radical pair reactions of specific photosensitive molecules. As the first such study in invertebrates, our work offers evidence that geomagnetic field reception in American cockroach is sensitive to a weak radio frequency field. Furthermore, we show that the 'deafening' effect at Larmor frequency 1.2 MHz is stronger than at different frequencies. The parameter studied was the rise in locomotor activity of cockroaches induced by periodic changes in the geomagnetic North positions by 60 deg. The onset of the disruptive effect of a 1.2 MHz field was found between 12 nT and 18 nT whereas the threshold of a doubled frequency field 2.4 MHz fell between 18 nT and 44 nT. A 7 MHz field showed no impact even in maximal 44 nT magnetic flux density. The results indicate resonance effects rather than non-specific bias of procedure itself and suggest that insects may be equipped with the same magnetoreception system as the birds.
Collapse
Affiliation(s)
- Martin Vácha
- Department of Animal Physiology, Faculty of Science, Masaryk University, Brno, Kotlárská 2, 611 37, Brno, Czech Republic.
| | | | | |
Collapse
|
24
|
Abraçado LG, Esquivel DMS, Wajnberg E. Solenopsis ant magnetic material: statistical and seasonal studies. Phys Biol 2009; 6:046012. [PMID: 19887705 DOI: 10.1088/1478-3975/6/4/046012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, we quantify the magnetic material amount in Solenopsis ants using ferromagnetic resonance (FMR) at room temperature. We sampled S. interrupta workers from several morphologically indistinguishable castes. Twenty-five oriented samples of each body part of S. interrupta (20 units each) showed that FMR line shapes are reproducible. The relative magnetic material amount was 31 +/- 12% (mean +/- SD) in the antennae, 27 +/- 13% in the head, 21 +/- 12% in the thorax and 20 +/- 10% in the abdomen. In order to measure variation in the magnetic material from late summer to early winter, ants were collected each month between March and July. The amount of magnetic material was greatest in all four body parts in March and least in all four body parts in June. In addition, S. richteri majors presented more magnetic material than minor workers. Extending these findings to the genera Solenopsis, the reduction in magnetic material found in winter could be explained by our sampling fewer foraging major ants.
Collapse
Affiliation(s)
- Leida G Abraçado
- Coordenação de Física Aplicada, Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
| | | | | |
Collapse
|
25
|
Vácha M, Půzová T, Drstková D. Ablation of antennae does not disrupt magnetoreceptive behavioural reaction of the American cockroach to periodically rotated geomagnetic field. Neurosci Lett 2008; 435:103-7. [PMID: 18337004 DOI: 10.1016/j.neulet.2008.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Neither a mode of function nor an exact anatomical localisation of the animal magnetoreceptor have been identified in any organism. Insects' antennae are organs specialized as unique neural input structures for a number of sensory modalities and have also been suggested to play a certain role in magnetoreception. In the present study, we used the American cockroach Periplaneta americana and tested the impact of amputation of both its antennae on the spontaneous magnetosensitive behaviour. By means of a full-laboratory assay we registered a non-specific unlearned movement reaction to the changing magnetic environment within the frame of the natural time and intensity parameters of the field. We report no loss of the magnetoreceptive behaviour in antennaeless cockroaches. Our finding narrows the spectrum of the insects' magnetite-rich nerve structures which might potentially be involved in magnetoreception.
Collapse
Affiliation(s)
- Martin Vácha
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlárská 2, Brno 611 37, Czech Republic.
| | | | | |
Collapse
|