1
|
Ghosh A, Karmakar V, Nair AB, Jacob S, Shinu P, Aldhubiab B, Almuqbil RM, Gorain B. Volatile Organic Compounds in Biological Matrices as a Sensitive Weapon in Cancer Diagnosis. Pharmaceuticals (Basel) 2025; 18:638. [PMID: 40430459 PMCID: PMC12114699 DOI: 10.3390/ph18050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Diagnosis and intervention at the earliest stages of cancer are imperative for maximizing patient recovery outcomes and substantially increasing survival rates and quality of life. Recently, to facilitate cancer diagnosis, volatile organic compounds (VOCs) have shown potential with unique characteristics as cancer biomarkers. Various insects with sophisticated sensitivities of odor can be quickly and readily trained to recognize such VOCs using olfactory-linked skills. Furthermore, the approach to analyzing VOCs can be made using electronic noses, commonly referred to as e-noses. Using analytical instruments like GC-MS, LC-MS/MS, etc., chemical blends are separated into their constituent parts. The significance of odorant receptors in triggering neural responses to ambient compounds has received great attention in the last twenty years, particularly in the investigation of insect olfaction. Sensilla, a sophisticated olfactory neural framework, is regulated by a neuronal receptor composed of neuronal, non-neuronal, extracellular lymphatic fluid with an effectively generated shell. This review provides an in-depth exploration of the structural, functional, and signaling mechanisms underlying odorant sensitivities and chemical odor detection in the excretory products of cancer patients, addressing current challenges in VOC-based cancer diagnostics and innovative strategies for advancement while also envisioning the transformative role of artificial olfactory systems in the future of cancer detection. Furthermore, the article emphasizes recent preclinical and clinical advancements in VOC applications, highlighting their potential to redefine early diagnostic approaches in oncology.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (A.G.); (V.K.)
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (A.G.); (V.K.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.)
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.)
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (B.A.); (R.M.A.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (A.G.); (V.K.)
| |
Collapse
|
2
|
Zanola D, Czaczkes TJ, Josens R. Toxic bait abandonment by an invasive ant is driven by aversive memories. Commun Biol 2025; 8:486. [PMID: 40128336 PMCID: PMC11933468 DOI: 10.1038/s42003-025-07818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Social insects such as ants possess a battery of behavioural mechanisms protecting their colonies against pathogens and toxins. Recently, active abandonment of poisoned food was described in the invasive ant Linepithema humile. During this abandonment, foraging declines by 80% within 6-8 h after baits become toxic-a reduction not due to satiety, diminished motivation, or mortality. Here we explore the mechanisms behind this behaviour, testing two hypotheses: (1) the presence of 'no entry' pheromones near toxic food, and (2) the formation of aversive memories linked to the toxic food site. In field trials, we placed bridges leading to sucrose, nothing, or poisoned sucrose on an active trail. Within hours, 80% of ants abandoned poisoned bait bridges. By swapping bridges strategically, we confirmed that aversive memories formed at toxic bait sites, while no evidence of a 'no entry' pheromone was found. Then, in the laboratory, we asked how ants may be sensing the toxicity of the bait, hypothesising poison-induced malaise. Motility, used as a proxy for malaise, was 29% lower in toxicant-exposed ants after 3 h, linking malaise to abandonment. Developing toxicants with delayed malaise, not just delayed mortality, may improve toxic bait control protocols.
Collapse
Affiliation(s)
- Daniel Zanola
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine
| | - Tomer J Czaczkes
- Animal Comparative Economics laboratory, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentine.
| |
Collapse
|
3
|
Galante H, Czaczkes TJ. Invasive ant learning is not affected by seven potential neuroactive chemicals. Curr Zool 2024; 70:87-97. [PMID: 38476136 PMCID: PMC10926265 DOI: 10.1093/cz/zoad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 03/14/2024] Open
Abstract
Argentine ants Linepithema humile are one of the most damaging invasive alien species worldwide. Enhancing or disrupting cognitive abilities, such as learning, has the potential to improve management efforts, for example by increasing preference for a bait, or improving ants' ability to learn its characteristics or location. Nectar-feeding insects are often the victims of psychoactive manipulation, with plants lacing their nectar with secondary metabolites such as alkaloids and non-protein amino acids which often alter learning, foraging, or recruitment. However, the effect of neuroactive chemicals has seldomly been explored in ants. Here, we test the effects of seven potential neuroactive chemicals-two alkaloids: caffeine and nicotine; two biogenic amines: dopamine and octopamine, and three nonprotein amino acids: β-alanine, GABA and taurine-on the cognitive abilities of invasive L. humile using bifurcation mazes. Our results confirm that these ants are strong associative learners, requiring as little as one experience to develop an association. However, we show no short-term effect of any of the chemicals tested on spatial learning, and in addition no effect of caffeine on short-term olfactory learning. This lack of effect is surprising, given the extensive reports of the tested chemicals affecting learning and foraging in bees. This mismatch could be due to the heavy bias towards bees in the literature, a positive result publication bias, or differences in methodology.
Collapse
Affiliation(s)
- Henrique Galante
- Department of Zoology and Evolutionary Biology, Animal Comparative Economics Laboratory, University of Regensburg, 93053 Regensburg, Germany
| | - Tomer J Czaczkes
- Department of Zoology and Evolutionary Biology, Animal Comparative Economics Laboratory, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Piqueret B, Montaudon É, Devienne P, Leroy C, Marangoni E, Sandoz JC, d'Ettorre P. Ants act as olfactory bio-detectors of tumours in patient-derived xenograft mice. Proc Biol Sci 2023; 290:20221962. [PMID: 36695032 PMCID: PMC9874262 DOI: 10.1098/rspb.2022.1962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Early detection of cancer is critical in medical sciences, as the sooner a cancer is diagnosed, the higher are the chances of recovery. Tumour cells are characterized by specific volatile organic compounds (VOCs) that can be used as cancer biomarkers. Through olfactory associative learning, animals can be trained to detect these VOCs. Insects such as ants have a refined sense of smell, and can be easily and rapidly trained with olfactory conditioning. Using urine from patient-derived xenograft mice as stimulus, we demonstrate that individual ants can learn to discriminate the odour of healthy mice from that of tumour-bearing mice and do so after only three conditioning trials. After training, they spend approximately 20% more time in the vicinity of the learned odour than beside the other stimulus. Chemical analyses confirmed that the presence of the tumour changed the urine odour, supporting the behavioural results. Our study demonstrates that ants reliably detect tumour cues in mice urine and have the potential to act as efficient and inexpensive cancer bio-detectors.
Collapse
Affiliation(s)
- Baptiste Piqueret
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, Villetaneuse UR4443, France
| | - Élodie Montaudon
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Paul Devienne
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, Villetaneuse UR4443, France
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, Villetaneuse UR4443, France
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005 Paris, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91190 Gif-sur-Yvette, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, Villetaneuse UR4443, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Yilmaz A, Gagnon Y, Byrne MJ, Foster JJ, Baird E, Dacke M. The balbyter ant Camponotus fulvopilosus combines several navigational strategies to support homing when foraging in the close vicinity of its nest. Front Integr Neurosci 2022; 16:914246. [PMID: 36187138 PMCID: PMC9523141 DOI: 10.3389/fnint.2022.914246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Many insects rely on path integration to define direct routes back to their nests. When shuttling hundreds of meters back and forth between a profitable foraging site and a nest, navigational errors accumulate unavoidably in this compass- and odometer-based system. In familiar terrain, terrestrial landmarks can be used to compensate for these errors and safely guide the insect back to its nest with pin-point precision. In this study, we investigated the homing strategies employed by Camponotus fulvopilosus ants when repeatedly foraging no more than 1.25 m away from their nest. Our results reveal that the return journeys of the ants, even when setting out from a feeder from which the ants could easily get home using landmark information alone, are initially guided by path integration. After a short run in the direction given by the home vector, the ants then switched strategies and started to steer according to the landmarks surrounding their nest. We conclude that even when foraging in the close vicinity of its nest, an ant still benefits from its path-integrated vector to direct the start of its return journey.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Ayse Yilmaz,
| | - Yakir Gagnon
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marcus J. Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James J. Foster
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Neurobiology, University of Konstanz, Konstanz, Germany
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Piqueret B, Bourachot B, Leroy C, Devienne P, Mechta-Grigoriou F, d'Ettorre P, Sandoz JC. Ants detect cancer cells through volatile organic compounds. iScience 2022; 25:103959. [PMID: 35281730 PMCID: PMC8914326 DOI: 10.1016/j.isci.2022.103959] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the world's leading causes of death. A critical challenge for public health is to develop a noninvasive, inexpensive, and efficient tool for early cancer detection. Cancer cells are characterized by an altered metabolism, producing unique patterns of volatile organic compounds (VOCs) that can be used as cancer biomarkers. Dogs can detect VOCs via olfactory associative learning, but training dogs is costly and time-consuming. Insects, such as ants, have a refined sense of smell and can be rapidly trained. We show that individual ants need only a few training trials to learn, memorize, and reliably detect the odor of human cancer cells. These performances rely on specific VOC patterns, as shown by gas chromatography/mass spectrometry. Our findings suggest that using ants as living tools to detect biomarkers of human cancer is feasible, fast, and less laborious than using other animals.
Collapse
Affiliation(s)
- Baptiste Piqueret
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Brigitte Bourachot
- Stress and Cancer Laboratory, Institut Curie, PSL Research University, Equipe labelisée Ligue Nationale Contre le Cancer, 26, rue d'Ulm, 75248 Paris Cedex 05, France.,Inserm, U830, Paris F-75248, France
| | - Chloé Leroy
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Paul Devienne
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, PSL Research University, Equipe labelisée Ligue Nationale Contre le Cancer, 26, rue d'Ulm, 75248 Paris Cedex 05, France.,Inserm, U830, Paris F-75248, France
| | - Patrizia d'Ettorre
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, 93430 Villetaneuse, France.,Institut Universitaire de France (IUF), Paris, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, CNRS, IRD, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Rossi N, Pereyra M, Moauro MA, Giurfa M, d'Ettorre P, Josens R. Trail pheromone modulates subjective reward evaluation in Argentine ants. J Exp Biol 2020; 223:jeb230532. [PMID: 32680904 DOI: 10.1242/jeb.230532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The Argentine ant, Linepithema humile, is native to South America but has become one of the most invasive species in the world. These ants heavily rely on trail pheromones for foraging, and previous studies have focused on such signals to develop a strategy for chemical control. Here, we studied the effects of pre-exposure to the trail pheromone on sugar acceptance and olfactory learning in Argentine ants. We used the synthetic trail pheromone component (Z)-9-hexadecenal, which triggers the same attraction and trail-following behavior as the natural trail pheromone. We found that pre-exposure to (Z)-9-hexadecenal increases the acceptance of sucrose solutions of different concentrations, thus changing the ants' subjective evaluation of a food reward. However, although ants learned to associate an odor with a sucrose reward, pheromone pre-exposure affected neither the learning nor the mid-term memory of the odor-reward association. Taking into account the importance of the Argentine ant as a pest and invasive organism, our results highlight the importance of pheromonal cues in resource evaluation, a fact that could be useful in control strategies implemented for this species.
Collapse
Affiliation(s)
- Natacha Rossi
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
| | - Muriel Pereyra
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Mariel A Moauro
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
- Institut Universitaire de France (IUF), Paris, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR4443, University Sorbonne Paris Nord, Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| |
Collapse
|
8
|
Oberhauser FB, Koch A, De Agrò M, Rex K, Czaczkes TJ. Ants resort to heuristics when facing relational-learning tasks they cannot solve. Proc Biol Sci 2020; 287:20201262. [PMID: 32781947 DOI: 10.1098/rspb.2020.1262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We humans sort the world around us into conceptual groups, such as 'the same' or 'different', which facilitates many cognitive tasks. Applying such abstract concepts can improve problem-solving success and is therefore worth the cognitive investment. In this study, we investigated whether ants (Lasius niger) can learn the relational rule of 'the same' or 'different' by training them in an odour match-to-sample test over 48 visits. While ants in the 'different' treatment improved significantly over time, reaching around 65% correct decisions, ants in the 'same' treatment did not. Ants did not seem able to learn such abstract relational concepts, but instead created their own individual strategy to try to solve the problem: some ants decided to 'always go left', others preferred a 'go to the more salient cue' heuristic which systematically biased their decisions. These heuristics even occasionally lowered the success rate in the experiment below chance, indicating that following any rule may be more desirable then making truly random decisions. As the finding that ants resort to heuristics when facing hard-to-solve decisions was discovered post-hoc, we strongly encourage other researchers to ask whether employing heuristics in the face of challenging tasks is a widespread phenomenon in insects.
Collapse
Affiliation(s)
- F B Oberhauser
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Germany
| | - A Koch
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Germany
| | - M De Agrò
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Germany.,Department of General Psychology, University of Padova, Italy
| | - K Rex
- Department of Biology, Pestalozzi-Gymnasium, Munich, Germany
| | - T J Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Germany
| |
Collapse
|
9
|
Piqueret B, Sandoz JC, d'Ettorre P. Ants learn fast and do not forget: associative olfactory learning, memory and extinction in Formica fusca. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190778. [PMID: 31312508 PMCID: PMC6599790 DOI: 10.1098/rsos.190778] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Learning is a widespread phenomenon that allows behavioural flexibility when individuals face new situations. However, learned information may lose its value over time. If such a memory endures, it can be deleterious to individuals. The process of extinction allows memory updating when the initial information is not relevant anymore. Extinction is widespread among animals, including humans. We investigated associative appetitive learning in an ant species that is widely distributed in the Northern Hemisphere, Formica fusca. We studied acquisition and memory between 1 h and one week after conditioning, as well as the extinction process. Ants learn very rapidly, their memory lasts up to 3 days, decreases slowly over time and is highly resistant to extinction, even after a single conditioning trial. Using a pharmacological approach, we show that this single-trial memory critically depends on protein synthesis (long-term memory). These results indicate that individual ant workers of F. fusca show remarkable learning and memory performances. Intriguingly, they also show a strong resistance to updating learned associations. Resistance to extinction may be advantageous when the environment is stochastic and individuals need to switch often from one learned task to another.
Collapse
Affiliation(s)
- Baptiste Piqueret
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| |
Collapse
|
10
|
Private information conflict: Lasius niger ants prefer olfactory cues to route memory. Anim Cogn 2019; 22:355-364. [DOI: 10.1007/s10071-019-01248-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
|
11
|
Abstract
The desert ant Cataglyphis fortis inhabits the North African saltpans where it individually forages for dead arthropods. Homing ants rely mainly on path integration, i.e., the processing of directional information from a skylight compass and distance information from an odometer. Due to the far-reaching foraging runs, path integration is error-prone and guides the ants only to the vicinity of the nest, where the ants then use learned visual and olfactory cues to locate the inconspicuous nest entrance. The learning of odors associated with the nest entrance is well established. We furthermore know that foraging Cataglyphis use the food-derived necromone linoleic acid to pinpoint dead insects. Here we show that Cataglyphis in addition can learn the association of a given odor with food. After experiencing food crumbs that were spiked with an innately neutral odor, ants were strongly attracted by the same odor during their next foraging journey. We therefore explored the characteristics of the ants' food-odor memory and identified pronounced differences from their memory for nest-associated odors. Nest odors are learned only after repeated learning trials and become ignored as soon as the ants do not experience them at the nest anymore. In contrast, ants learn food odors after a single experience, remember at least 14 consecutively learned food odors, and do so for the rest of their lives. As an ant experiences many food items during its lifetime, but only a single nest, differentially organized memories for both contexts might be adaptive.
Collapse
|
12
|
Oberhauser FB, Czaczkes TJ. Tasting the unexpected: disconfirmation of expectations leads to lower perceived food value in an invertebrate. Biol Lett 2018; 14:20180440. [PMID: 30185610 PMCID: PMC6170749 DOI: 10.1098/rsbl.2018.0440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/07/2018] [Indexed: 11/12/2022] Open
Abstract
To make sensible decisions, both humans and other animals must compare the available options against a reference point-either other options or previous experience. Options of higher quality than the reference are considered good value. However, many perceptible attributes of options are value-neutral, such as flower scent. Nonetheless, such value-neutral differences may be part of an expectation. Can a mismatch between the expectation and experience of value-neutral attributes affect perceived value? Consumer psychology theory and results suggest it can. To test this in a non-human animal, we manipulated a value-neutral aspect of a food source-its taste-while keeping its absolute value-its sweetness-the same. Individual ants (Lasius niger) were allowed to drink either lemon- or rosemary-flavoured 1 M sucrose. After three successive visits to the food, we switched the taste in the last, fourth, visit to induce a disconfirmation of expectations. In control trials, ants received the same taste on all four visits. Disconfirmed ants showed lower food acceptance and laid less pheromone on the way back to the nest, even though the molarity of the food was unchanged. As ants recruit nest-mates via pheromone depositions, fewer depositions indicate that the ants valued the food less. Thus, an expectation of value-neutral attributes can influence the perceived value of a resource. Such influences of value-neutral variables on value perception may affect how animals interact with and exploit their environment, and may contribute to phenomena such as flower constancy.
Collapse
Affiliation(s)
- F B Oberhauser
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Regensburg 93053, Germany
| | - T J Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
13
|
Ireland T, Garnier S. Architecture, space and information in constructions built by humans and social insects: a conceptual review. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170244. [PMID: 29967305 PMCID: PMC6030583 DOI: 10.1098/rstb.2017.0244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms 'information', 'space' and 'architecture' to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross-fertilization between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects.This article is part of the theme issue 'Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour'.
Collapse
Affiliation(s)
- Tim Ireland
- Kent School of Architecture, University of Kent, Canterbury, CT2 7NR, UK
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ07102, USA
| |
Collapse
|
14
|
Yilmaz A, Dyer AG, Rössler W, Spaethe J. Innate colour preference, individual learning and memory retention in the ant Camponotus blandus. ACTA ACUST UNITED AC 2018; 220:3315-3326. [PMID: 28931719 DOI: 10.1242/jeb.158501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023]
Abstract
Ants are a well-characterized insect model for the study of visual learning and orientation, but the extent to which colour vision is involved in these tasks remains unknown. We investigated the colour preference, learning and memory retention of Camponotus blandus foragers under controlled laboratory conditions. Our results show that C. blandus foragers exhibit a strong innate preference for ultraviolet (UV, 365 nm) over blue (450 nm) and green (528 nm) wavelengths. The ants can learn to discriminate 365 nm from either 528 nm or 450 nm, independent of intensity changes. However, they fail to discriminate between 450 nm and 528 nm. Modelling of putative colour spaces involving different numbers of photoreceptor types revealed that colour discrimination performance of individual ants is best explained by dichromacy, comprising a short-wavelength (UV) receptor with peak sensitivity at about 360 nm, and a long-wavelength receptor with peak sensitivity between 470 nm and 560 nm. Foragers trained to discriminate blue or green from UV light are able to retain the learned colour information in an early mid-term (e-MTM), late mid-term (l-MTM), early long-term (e-LTM) and late long-term (l-LTM) memory from where it can be retrieved after 1 h, 12 h, 24 h, 3 days and 7 days after training, indicating that colour learning may induce different memory phases in ants. Overall, our results show that ants can use chromatic information in a way that should promote efficient foraging in complex natural environments.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Adrian G Dyer
- Department of Physiology, Monash University, Clayton, VIC 3168, Australia.,School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Wolfgang Rössler
- Department of Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
Aguiar JMRBV, Roselino AC, Sazima M, Giurfa M. Can honey bees discriminate between floral-fragrance isomers? J Exp Biol 2018; 221:jeb.180844. [DOI: 10.1242/jeb.180844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity.
Collapse
Affiliation(s)
- João Marcelo Robazzi Bignelli Valente Aguiar
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Ana Carolina Roselino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marlies Sazima
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| |
Collapse
|
16
|
Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka L, Avarguès-Weber A, Giurfa M. Associative visual learning by tethered bees in a controlled visual environment. Sci Rep 2017; 7:12903. [PMID: 29018218 PMCID: PMC5635106 DOI: 10.1038/s41598-017-12631-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022] Open
Abstract
Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS−). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS− after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS− also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.
Collapse
Affiliation(s)
- Alexis Buatois
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Cécile Pichot
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Patrick Schultheiss
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, Univ Paris-Sud, IRD, University Paris Saclay, F-91198, Gif-sur-Yvette, France
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, University François Rabelais of Tours, F-37200, Tours, France
| | - Lars Chittka
- Queen Mary University of London, School of Biological and Chemical Sciences, Biological and Experimental Psychology, Mile End Road, London, E1 4NS, United Kingdom
| | - Aurore Avarguès-Weber
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France.
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France.
| |
Collapse
|
17
|
Moreyra S, D'Adamo P, Lozada M. Long-term spatial memory in Vespula germanica social wasps: the influence of past experience on foraging behavior. INSECT SCIENCE 2017; 24:853-858. [PMID: 27273706 DOI: 10.1111/1744-7917.12366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Social insects exhibit complex learning and memory mechanisms while foraging. Vespula germanica (Fab.) (Hymenoptera: Vespidae) is an invasive social wasp that frequently forages on undepleted food sources, making several flights between the resource and the nest. Previous studies have shown that during this relocating behavior, wasps learn to associate food with a certain site, and can recall this association 1 h later. In this work, we evaluated whether this wasp species is capable of retrieving an established association after 24 h. For this purpose, we trained free flying individuals to collect proteinaceous food from an experimental plate (feeder) located in an experimental array. A total of 150 individuals were allowed 2, 4, or 8 visits. After the training phase, the array was removed and set up again 24 h later, but this time a second baited plate was placed opposite to the first. After 24 h we recorded the rate of wasps that returned to the experimental area and those which collected food from the previously learned feeding station or the nonlearned one. During the testing phase, we observed that a low rate of wasps trained with 2 collecting visits returned to the experimental area (22%), whereas the rate of returning wasps trained with 4 or 8 collecting visits was higher (51% and 41%, respectively). Moreover, wasps trained with 8 feeding visits collected food from the previously learned feeding station at a higher rate than those that did from the nonlearned one. In contrast, wasps trained 2 or 4 times chose both feeding stations at a similar rate. Thus, significantly more wasps returned to the previously learned feeding station after 8 repeated foraging flights but not after only 2 or 4 visits. This is the first report that demonstrates the existence of long-term spatial memory in V. germanica wasps.
Collapse
Affiliation(s)
- Sabrina Moreyra
- Laboratory Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral, 1250 (8400), Bariloche, Argentina
| | - Paola D'Adamo
- Laboratory Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral, 1250 (8400), Bariloche, Argentina
| | - Mariana Lozada
- Laboratory Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral, 1250 (8400), Bariloche, Argentina
| |
Collapse
|
18
|
Desmedt L, Baracchi D, Devaud JM, Giurfa M, d'Ettorre P. Aversive learning of odor-heat associations in ants. J Exp Biol 2017; 220:4661-4668. [DOI: 10.1242/jeb.161737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/27/2017] [Indexed: 11/20/2022]
Abstract
Ants have recently emerged as useful models for the study of olfactory learning. In this framework, the development of a protocol for the appetitive conditioning of the maxilla-labium extension response (MaLER) provided the possibility of studying Pavlovian odor-food learning in a controlled environment. Here we extend these studies by introducing the first Pavlovian aversive learning protocol for harnessed ants in the laboratory. We worked with carpenter ants Camponotus aethiops and first determined the capacity of different temperatures applied to the body surface to elicit the typical aversive mandible opening response (MOR). We determined that 75°C is the optimal temperature to induce MOR and chose the hind legs as the stimulated body region due to their high sensitivity. We then studied the ability of ants to learn and remember odor-heat associations using 75°C as unconditioned stimulus. We studied learning and short-term retention after absolute (one odor paired with heat) and differential conditioning (a punished odor versus an unpunished odor). Our results show that ants successfully learn the odor-heat association under a differential-conditioning regime and thus exhibit conditioned MOR to the punished odor. Yet, their performance under an absolute-conditioning regime is poor. These results demonstrate that ants are capable of aversive learning and confirm previous findings about the different attentional resources solicited by differential and absolute conditioning in general.
Collapse
Affiliation(s)
- Lucie Desmedt
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, France
| | - David Baracchi
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, France
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Jean-Marc Devaud
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, France
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| |
Collapse
|
19
|
Perez M, Nowotny T, d'Ettorre P, Giurfa M. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis. Proc Biol Sci 2016; 283:20160551. [PMID: 27581883 PMCID: PMC5013785 DOI: 10.1098/rspb.2016.0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity.
Collapse
Affiliation(s)
- Margot Perez
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| |
Collapse
|
20
|
Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta. J Invertebr Pathol 2016; 138:24-9. [PMID: 27234423 DOI: 10.1016/j.jip.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
In social insects, social behavior may be changed in a way that preventing the spread of pathogens. We infected workers of the ant Solenopsis invicta with an entomopathogenic fungus Metarhizium anisopliae and then videotaped and/or measured worker feeding and trophallactic behavior. Results showed that fungal infected S. invicta enhanced their preference for bitter alkaloid chemical quinine on 3days after inoculation, which might be self-medication of S. invicta by ingesting more alkaloid substances in response to pathogenic infection. Furthermore, infected ants devoted more time to trophallactic behavior with their nestmates on 3days post inoculation, in return receiving more food. Increased interactions between exposed ants and their naive nestmates suggest the existence of social immunity in S. invicta. Overall, our study indicates that S. invicta may use behavioral defenses such as self-medication and social immunity in response to a M. anisopliae infection.
Collapse
|
21
|
Das G, Lin S, Waddell S. Remembering Components of Food in Drosophila. Front Integr Neurosci 2016; 10:4. [PMID: 26924969 PMCID: PMC4759284 DOI: 10.3389/fnint.2016.00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 12/28/2022] Open
Abstract
Remembering features of past feeding experience can refine foraging and food choice. Insects can learn to associate sensory cues with components of food, such as sugars, amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila some food components activate unique subsets of dopaminergic neurons (DANs) that innervate distinct functional zones on the mushroom bodies (MBs). This architecture suggests that the overall dopaminergic neuron population could provide a potential cellular substrate through which the fly might learn to value a variety of food components. In addition, such an arrangement predicts that individual component memories reside in unique locations. DANs are also critical for food memory consolidation and deprivation-state dependent motivational control of the expression of food-relevant memories. Here, we review our current knowledge of how nutrient-specific memories are formed, consolidated and specifically retrieved in insects, with a particular emphasis on Drosophila.
Collapse
Affiliation(s)
- Gaurav Das
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Suewei Lin
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxford, UK
| |
Collapse
|
22
|
Perez M, Giurfa M, d'Ettorre P. The scent of mixtures: rules of odour processing in ants. Sci Rep 2015; 5:8659. [PMID: 25726692 PMCID: PMC4345350 DOI: 10.1038/srep08659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/29/2015] [Indexed: 11/08/2022] Open
Abstract
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.
Collapse
Affiliation(s)
- Margot Perez
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Martin Giurfa
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
23
|
Comparative outlook over physiological and ecological characteristics of three closely-related Myrmica species. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0399-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yilmaz A, Aksoy V, Camlitepe Y, Giurfa M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front Behav Neurosci 2014; 8:205. [PMID: 24982621 PMCID: PMC4056385 DOI: 10.3389/fnbeh.2014.00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey ; Department of Behavioral Physiology and Sociobiology, University of Würzburg Würzburg, Germany
| | - Volkan Aksoy
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Yilmaz Camlitepe
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Martin Giurfa
- Research Centre for Animal Cognition, Université de Toulouse Toulouse, France ; CNRS, Research Centre for Animal Cognition Toulouse, France
| |
Collapse
|
25
|
Muscedere ML, Gronenberg W, Moreau CS, Traniello JFA. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc Biol Sci 2014; 281:20140217. [PMID: 24741016 DOI: 10.1098/rspb.2014.0217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.
Collapse
Affiliation(s)
- Mario L Muscedere
- Undergraduate Program in Neuroscience, Boston University, , 2 Cummington Mall, Boston, MA 02215, USA, Department of Neuroscience, University of Arizona, , 611 Gould-Simpson Science Building, Tucson, AZ 85721, USA, Department of Science and Education, Field Museum of Natural History, , 1400 South Lake Shore Drive, Chicago, IL 60605, USA, Department of Biology, Boston University, , 5 Cummington Mall, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
26
|
Bos N, d'Ettorre P, Guerrieri FJ. Chemical structure of odorants and perceptual similarity in ants. ACTA ACUST UNITED AC 2013; 216:3314-20. [PMID: 23685976 DOI: 10.1242/jeb.087007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals are often immersed in a chemical world consisting of mixtures of many compounds rather than of single substances, and they constantly face the challenge of extracting relevant information out of the chemical landscape. To this purpose, the ability to discriminate among different stimuli with different valence is essential, but it is also important to be able to generalise, i.e. to treat different but similar stimuli as equivalent, as natural variation does not necessarily affect stimulus valence. Animals can thus extract regularities in their environment and make predictions, for instance about distribution of food resources. We studied perceptual similarity of different plant odours by conditioning individual carpenter ants to one odour, and subsequently testing their response to another, structurally different odour. We found that asymmetry in generalisation, where ants generalise from odour A to B, but not from B to A, is dependent on both chain length and functional group. By conditioning ants to a binary mixture, and testing their reaction to the individual components of the mixture, we show that overshadowing, where parts of a mixture are learned better than others, is rare. Additionally, generalisation is dependent not only on the structural similarity of odorants, but also on their functional value, which might play a crucial role. Our results provide insight into how ants make sense of the complex chemical world around them, for example in a foraging context, and provide a basis with which to investigate the neural mechanisms behind perceptual similarity.
Collapse
Affiliation(s)
- Nick Bos
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Learning and Recognition of Identity in Ants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Kandori I, Yamaki T. Reward and non-reward learning of flower colours in the butterfly Byasa alcinous (Lepidoptera: Papilionidae). Naturwissenschaften 2012; 99:705-13. [PMID: 22851335 DOI: 10.1007/s00114-012-0952-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 11/26/2022]
Abstract
Learning plays an important role in food acquisition for a wide range of insects. To increase their foraging efficiency, flower-visiting insects may learn to associate floral cues with the presence (so-called reward learning) or the absence (so-called non-reward learning) of a reward. Reward learning whilst foraging for flowers has been demonstrated in many insect taxa, whilst non-reward learning in flower-visiting insects has been demonstrated only in honeybees, bumblebees and hawkmoths. This study examined both reward and non-reward learning abilities in the butterfly Byasa alcinous whilst foraging among artificial flowers of different colours. This butterfly showed both types of learning, although butterflies of both sexes learned faster via reward learning. In addition, females learned via reward learning faster than males. To the best of our knowledge, these are the first empirical data on the learning speed of both reward and non-reward learning in insects. We discuss the adaptive significance of a lower learning speed for non-reward learning when foraging on flowers.
Collapse
Affiliation(s)
- Ikuo Kandori
- Laboratory of Entomology, Faculty of Agriculture, Kinki University, Naka-machi, Nara, 631-8505, Japan.
| | | |
Collapse
|
29
|
Chilaka N, Perkins E, Tripet F. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto. Malar J 2012; 11:27. [PMID: 22284012 PMCID: PMC3283451 DOI: 10.1186/1475-2875-11-27] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/27/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. METHODS A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. RESULTS Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. CONCLUSIONS The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control.
Collapse
Affiliation(s)
- Nora Chilaka
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, Newcastle, UK.
| | | | | |
Collapse
|
30
|
Just follow your nose: homing by olfactory cues in ants. Curr Opin Neurobiol 2011; 22:231-5. [PMID: 22137100 DOI: 10.1016/j.conb.2011.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022]
Abstract
How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities.
Collapse
|
31
|
Guerrieri FJ, d'Ettorre P, Devaud JM, Giurfa M. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants. J Exp Biol 2011; 214:3300-4. [DOI: 10.1242/jeb.059170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and non-rewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which individually harnessed ants learn an association between odour and reward. When the antennae of an ant are stimulated with sucrose solution, the insect extends its maxilla–labium to absorb the solution (maxilla–labium extension response). We differentially conditioned ants to discriminate between two long-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72 h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10 min) or early and late mid-term memories (1 or 12 h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants.
Collapse
Affiliation(s)
- Fernando J. Guerrieri
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- CNRS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Patrizia d'Ettorre
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, 93430 Villetaneuse, France
| | - Jean-Marc Devaud
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- CNRS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Martin Giurfa
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- CNRS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
32
|
Foraging leafcutter ants: olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Brandstaetter AS, Kleineidam CJ. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J Neurophysiol 2011; 106:2437-49. [PMID: 21849606 DOI: 10.1152/jn.01106.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In colonies of eusocial Hymenoptera cooperation is organized through social odors, and particularly ants rely on a sophisticated odor communication system. Neuronal information about odors is represented in spatial activity patterns in the primary olfactory neuropile of the insect brain, the antennal lobe (AL), which is analog to the vertebrate olfactory bulb. The olfactory system is characterized by neuroanatomical compartmentalization, yet the functional significance of this organization is unclear. Using two-photon calcium imaging, we investigated the neuronal representation of multicomponent colony odors, which the ants assess to discriminate friends (nestmates) from foes (nonnestmates). In the carpenter ant Camponotus floridanus, colony odors elicited spatial activity patterns distributed across different AL compartments. Activity patterns in response to nestmate and nonnestmate colony odors were overlapping. This was expected since both consist of the same components at differing ratios. Colony odors change over time and the nervous system has to constantly adjust for this (template reformation). Measured activity patterns were variable, and variability was higher in response to repeated nestmate than to repeated nonnestmate colony odor stimulation. Variable activity patterns may indicate neuronal plasticity within the olfactory system, which is necessary for template reformation. Our results indicate that information about colony odors is processed in parallel in different neuroanatomical compartments, using the computational power of the whole AL network. Parallel processing might be advantageous, allowing reliable discrimination of highly complex social odors.
Collapse
Affiliation(s)
- Andreas Simon Brandstaetter
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
34
|
Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2009.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Provecho Y, Josens R. Olfactory memory established during trophallaxis affects food search behaviour in ants. J Exp Biol 2009; 212:3221-7. [DOI: 10.1242/jeb.033506] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Camponotus mus ants can associate sucrose and odour at the source during successive foraging cycles and use this memory to locate the nectar in the absence of other cues. These ants perform conspicuous trophallactic behaviour during recruitment while foraging for nectar. In this work, we studied whether Camponotus mus ants are able to establish this odour–sucrose association in the social context of trophallaxis and we evaluated this memory in another context previously experienced by the ant, as a nectar source. After a single trophallaxis of a scented solution, the receiver ant was tested in a Y-maze without any reward, where two scents were presented: in one arm, the solution scent and in the other, a new scent. Ants consistently chose the arm with the solution scent and stayed longer therein. Trophallaxis duration had no effect on the arm choice or with the time spent in each arm. Workers are able to associate an odour (conditioned stimulus)with the sucrose (unconditioned stimulus) they receive through a social interaction and use this memory as choice criteria during food searching.
Collapse
Affiliation(s)
- Yael Provecho
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Roxana Josens
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|