1
|
Longcore T, Rodríguez A, Witherington B, Penniman JF, Herf L, Herf M. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:511-521. [DOI: 10.1002/jez.2184] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Jay F. Penniman
- Pacific Cooperative Studies Unit; University of Hawaii at Manoa; Honolulu Hawaii
| | - Lorna Herf
- f.lux Software LLC; Los Angeles California
| | | |
Collapse
|
2
|
Chen SC, Xiao C, Troje NF, Robertson RM, Hawryshyn CW. Functional characterisation of the chromatically antagonistic photosensitive mechanism of erythrophores in the tilapia Oreochromis niloticus. ACTA ACUST UNITED AC 2015; 218:748-56. [PMID: 25573822 DOI: 10.1242/jeb.106831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-visual photoreceptors with diverse photopigments allow organisms to adapt to changing light conditions. Whereas visual photoreceptors are involved in image formation, non-visual photoreceptors mainly undertake various non-image-forming tasks. They form specialised photosensory systems that measure the quality and quantity of light and enable appropriate behavioural and physiological responses. Chromatophores are dermal non-visual photoreceptors directly exposed to light and they not only receive ambient photic input but also respond to it. These specialised photosensitive pigment cells enable animals to adjust body coloration to fit environments, and play an important role in mate choice, camouflage and ultraviolet (UV) protection. However, the signalling pathway underlying chromatophore photoresponses and the physiological importance of chromatophore colour change remain under-investigated. Here, we characterised the intrinsic photosensitive system of red chromatophores (erythrophores) in tilapia. Like some non-visual photoreceptors, tilapia erythrophores showed wavelength-dependent photoresponses in two spectral regions: aggregations of inner pigment granules under UV and short-wavelengths and dispersions under middle- and long-wavelengths. The action spectra curve suggested that two primary photopigments exert opposite effects on these light-driven processes: SWS1 (short-wavelength sensitive 1) for aggregations and RH2b (rhodopsin-like) for dispersions. Both western blot and immunohistochemistry showed SWS1 expression in integumentary tissues and erythrophores. The membrane potential of erythrophores depolarised under UV illumination, suggesting that changes in membrane potential are required for photoresponses. These results suggest that SWS1 and RH2b play key roles in mediating intrinsic erythrophore photoresponses in different spectral ranges and this chromatically dependent antagonistic photosensitive mechanism may provide an advantage to detect subtle environmental photic change.
Collapse
Affiliation(s)
- Shyh-Chi Chen
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Chengfeng Xiao
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Nikolaus F Troje
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of Psychology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - R Meldrum Robertson
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Craig W Hawryshyn
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6 Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
3
|
Siebeck UE, Wallis GM, Litherland L, Ganeshina O, Vorobyev M. Spectral and spatial selectivity of luminance vision in reef fish. Front Neural Circuits 2014; 8:118. [PMID: 25324727 PMCID: PMC4179750 DOI: 10.3389/fncir.2014.00118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/08/2014] [Indexed: 11/13/2022] Open
Abstract
Luminance vision has high spatial resolution and is used for form vision and texture discrimination. In humans, birds and bees luminance channel is spectrally selective-it depends on the signals of the long-wavelength sensitive photoreceptors (bees) or on the sum of long- and middle-wavelength sensitive cones (humans), but not on the signal of the short-wavelength sensitive (blue) photoreceptors. The reasons of such selectivity are not fully understood. The aim of this study is to reveal the inputs of cone signals to high resolution luminance vision in reef fish. Sixteen freshly caught damselfish, Pomacentrus amboinensis, were trained to discriminate stimuli differing either in their color or in their fine patterns (stripes vs. cheques). Three colors ("bright green", "dark green" and "blue") were used to create two sets of color and two sets of pattern stimuli. The "bright green" and "dark green" were similar in their chromatic properties for fish, but differed in their lightness; the "dark green" differed from "blue" in the signal for the blue cone, but yielded similar signals in the long-wavelength and middle-wavelength cones. Fish easily learned to discriminate "bright green" from "dark green" and "dark green" from "blue" stimuli. Fish also could discriminate the fine patterns created from "dark green" and "bright green". However, fish failed to discriminate fine patterns created from "blue" and "dark green" colors, i.e., the colors that provided contrast for the blue-sensitive photoreceptor, but not for the long-wavelength sensitive one. High resolution luminance vision in damselfish, Pomacentrus amboinensis, does not have input from the blue-sensitive cone, which may indicate that the spectral selectivity of luminance channel is a general feature of visual processing in both aquatic and terrestrial animals.
Collapse
Affiliation(s)
- Ulrike E Siebeck
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Guy Michael Wallis
- Centre for Sensorimotor Neuroscience, School of Human Movement Studies, The University of Queensland Brisbane, QLD, Australia
| | - Lenore Litherland
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Olga Ganeshina
- Department of Optometry and Visual Science, Auckland University Auckland, AU, New Zealand
| | - Misha Vorobyev
- Department of Optometry and Visual Science, Auckland University Auckland, AU, New Zealand
| |
Collapse
|
4
|
Abstract
Polarization of light, and visual sensitivity to it, is pervasive across aquatic and terrestrial environments. Documentation of invertebrate use of polarized light is widespread from navigation and foraging to species recognition. However, studies demonstrating that polarization body patterning serves as a communication signal (e.g., with evidence of changes in receiver behavior) are rare among invertebrate taxa and conspicuously absent among vertebrates. Here, we investigate polarization-mediated communication by northern swordtails, Xiphophorus nigrensis, using a custom-built videopolarimeter to measure polarization signals and an experimental paradigm that manipulates polarization signals without modifying their brightness or color. We conducted mate choice trials in an experimental tank that illuminates a pair of males with light passed through a polarization filter and a diffusion filter. By alternating the order of these filters between males, we presented females with live males that differed in polarization reflectance by >200% but with intensity and color differences below detection thresholds (∼5%). Combining videopolarimetry and polarization-manipulated mate choice trials, we found sexually dimorphic polarized reflectance and polarization-dependent female mate choice behavior with no polarization-dependent courtship behavior by males. Male swordtails exhibit greater within-body and body-to-background polarization contrast than females, and females preferentially associate with high-polarization-reflecting males. We also found limited support that males increase polarization contrast in social conditions over asocial conditions. Polarization cues in mate choice contexts may provide aquatic vertebrates with enhanced detection of specific display features (e.g., movements, angular information), as well as a signaling mechanism that may enhance detection by intended viewers while minimizing detection by others.
Collapse
|
5
|
Feedback from horizontal cells to cones mediates color induction and may facilitate color constancy in rainbow trout. PLoS One 2013; 8:e66216. [PMID: 23750282 PMCID: PMC3672170 DOI: 10.1371/journal.pone.0066216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Color vision is most beneficial when the visual system is color constant and can correct the excitations of photoreceptors for differences in environmental irradiance. A phenomenon related to color constancy is color induction, where the color of an object shifts away from the color of its surroundings. These two phenomena depend on chromatic spatial integration, which was suggested to originate at the feedback synapse from horizontal cells (HC) to cones. However, the exact retinal site was never determined. Using the electroretinogram and compound action potential recordings, we estimated the spectral sensitivity of the photoresponse of cones, the output of cones, and the optic nerve in rainbow trout. Recordings were performed before and following pharmacological inhibition of HC-cone feedback, and were repeated under two colored backgrounds to estimate the efficiency of color induction. No color induction could be detected in the photoresponse of cones. However, the efficiency of color induction in the cone output and optic nerve was substantial, with the efficiency in the optic nerve being significantly higher than in the cone output. We found that the efficiency of color induction in the cone output and optic nerve decreased significantly with the inhibition of HC-cone feedback. Therefore, our findings suggest not only that color induction originates as a result of HC-cone feedback, but also that this effect of HC-cone feedback is further amplified at downstream retinal elements, possibly through feedback mechanisms at the inner plexiform layer. This study provides evidence for an important role of HC-cone feedback in mediating color induction, and therefore, likely also in mediating color constancy.
Collapse
|
6
|
Sabbah S, Troje NF, Gray SM, Hawryshyn CW. High complexity of aquatic irradiance may have driven the evolution of four-dimensional colour vision in shallow-water fish. J Exp Biol 2013; 216:1670-82. [DOI: 10.1242/jeb.079558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Humans use three cone photoreceptor classes for colour vision, yet many birds, reptiles and shallow-water fish are tetrachromatic and use four cone classes. Screening pigments, that narrow the spectrum of photoreceptors in birds and diurnal reptiles, render visual systems with four cone classes more efficient. To date, however, the question of tetrachromacy in shallow-water fish, that, like humans, lack screening pigments, is still unsolved. We raise the possibility that tetrachromacy in fish has evolved in response to higher spectral complexity of underwater light. We compared the dimensionality of colour vision in humans and fish by examining the spectral complexity of the colour-signal reflected from objects into their eyes. Here we show that fish require four to six cone classes to reconstruct the colour-signal of aquatic objects at the accuracy level achieved by humans viewing terrestrial objects. This is because environmental light, which alters the colour-signals, is more complex and contains more spectral fluctuations underwater than on land. We further show that fish cones are better suited than human cones to detect these spectral fluctuations, suggesting that the capability of fish cones to detect high-frequency fluctuations in the colour-signal confers an advantage. Taken together, we propose that tetrachromacy in fish has evolved to enhance the reconstruction of complex colour-signals in shallow aquatic environments. Of course, shallow-water fish might possess less than four cone classes; however, this would come with the inevitable loss in accuracy of signal reconstruction.
Collapse
|
7
|
Hornsby MAW, Sabbah S, Robertson RM, Hawryshyn CW. Modulation of environmental light alters reception and production of visual signals in Nile tilapia. J Exp Biol 2013; 216:3110-22. [DOI: 10.1242/jeb.081331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Signal reception and production form the basis of animal visual communication, and are largely constrained by environmental light. However, the role of environmental light in producing variation in either signal reception or production has not been fully investigated. To chart the effect of environmental light on visual sensitivity and body colouration throughout ontogeny, we measured spectral sensitivity, lens transmission, and body pattern reflectance from juvenile and adult Nile tilapia held under two environmental light treatments. Spectral sensitivity in juveniles reared under a broad-spectrum light treatment and a red-shifted light treatment differed mostly at short wavelengths, where the irradiance of the two light treatments differed the most. In contrast, adults held under the same two light treatments did not differ in spectral sensitivity. Lens transmission in both juveniles and adults did not differ significantly between environmental light treatments, indicating that differences in spectral sensitivity of juveniles originated in the retina. Juveniles and adults held under the two environmental light treatments differed in spectral reflectance, and adults transferred to a third, white light treatment differed in spectral reflectance from their counterparts held under the two original treatments. These results demonstrate that environmental light plays a crucial role in shaping signal reception in juveniles and signal production throughout ontogeny, reinforcing the notion that environmental light has the capacity to influence animal communication, and suggesting that the characteristics of environmental light should be considered in models of ecological speciation.
Collapse
|
8
|
Sabbah S, Hui J, Hauser FE, Nelson WA, Hawryshyn CW. Ontogeny in the visual system of Nile tilapia. J Exp Biol 2012; 215:2684-95. [DOI: 10.1242/jeb.069922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Retinal neurogenesis in fish facilitates cellular rearrangement throughout ontogeny, potentially allowing for optimization of the visual system to shifts in habitat and behaviour. To test this possibility, we studied the developmental trajectory of the photopic visual process in the Nile tilapia. We examined ontogenetic changes in lens transmission, photoreceptor sensitivity and post-receptoral sensitivity, and used these to estimate changes in cone pigment frequency and retinal circuitry. We observed an ontogenetic decrease in ultraviolet (UV) photoreceptor sensitivity, which resulted from a reduction in the SWS1 cone pigment frequency, and was associated with a reduction in lens transmission at UV wavelengths. Additionally, post-receptoral sensitivity to both UV and long wavelengths decreased with age, probably reflecting changes in photoreceptor sensitivity and retinal circuitry. This novel remodelling of retinal circuitry occurred following maturation of the visual system but prior to reaching adulthood, and thus may facilitate optimization of the visual system to the changing sensory demands. Interestingly, the changes in post-receptoral sensitivity to long wavelengths could not be predicted by the changes observed in lens transmission, cone pigment frequency or photoreceptor sensitivity. This finding emphasizes the importance of considering knowledge of visual sensitivity and retinal processing when studying visual adaptations and attempting to relate visual function to the natural environment. This study advances our understanding of ontogeny in visual systems and demonstrates that the association between different elements of the visual process can be explored effectively by examining visual function throughout ontogeny.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Jonathan Hui
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Frances E. Hauser
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - William A. Nelson
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Craig W. Hawryshyn
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|
9
|
Sabbah S, Laria RL, Gray SM, Hawryshyn CW. Functional diversity in the color vision of cichlid fishes. BMC Biol 2010; 8:133. [PMID: 21029409 PMCID: PMC2988715 DOI: 10.1186/1741-7007-8-133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/28/2010] [Indexed: 11/15/2022] Open
Abstract
Background Color vision plays a critical role in visual behavior. An animal's capacity for color vision rests on the presence of differentially sensitive cone photoreceptors. Spectral sensitivity is a measure of the visual responsiveness of these cones at different light wavelengths. Four classes of cone pigments have been identified in vertebrates, but in teleost fishes, opsin genes have undergone gene duplication events and thus can produce a larger number of spectrally distinct cone pigments. In this study, we examine the question of large-scale variation in color vision with respect to individual, sex and species that may result from differential expression of cone pigments. Cichlid fishes are an excellent model system for examining variation in spectral sensitivity because they have seven distinct cone opsin genes that are differentially expressed. Results To examine the variation in the number of cones that participate in cichlid spectral sensitivity, we used whole organism electrophysiology, opsin gene expression and empirical modeling. Examination of over 100 spectral sensitivity curves from 34 individuals of three species revealed that (1) spectral sensitivity of individual cichlids was based on different subsets of four or five cone pigments, (2) spectral sensitivity was shaped by multiple cone interactions and (3) spectral sensitivity differed between species and correlated with foraging mode and the spectral reflectance of conspecifics. Our data also suggest that there may be significant differences in opsin gene expression between the sexes. Conclusions Our study describes complex opponent and nonopponent cone interactions that represent the requisite neural processing for color vision. We present the first comprehensive evidence for pentachromatic color vision in vertebrates, which offers the potential for extraordinary spectral discrimination capabilities. We show that opsin gene expression in cichlids, and possibly also spectral sensitivity, may be sex-dependent. We argue that females and males sample their visual environment differently, providing a neural basis for sexually dimorphic visual behaviour. The diversification of spectral sensitivity likely contributes to sensory adaptations that enhance the contrast of transparent prey and the detection of optical signals from conspecifics, suggesting a role for both natural and sexual selection in tuning color vision.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|