1
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, FlyLight Project Team, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Itai Cohen
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
2
|
Wilmsen SM, Dzialowski E. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111439. [PMID: 37119960 DOI: 10.1016/j.cbpa.2023.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Manduca sexta are endothermic insects, requiring adult thorax temperatures to be elevated above 35 °C for flight muscles to produce the wing beat frequencies necessary for flight. During flight, these animals rely on aerobic production of ATP by flight muscle mitochondria with several potential metabolic pathways providing the fuel. Along with typical carbohydrate substrates, mitochondria of other endothermic insects including bumblebees and wasps can use the amino acid proline or glycerol 3-phosphate (G3P) as metabolic fuel for prewarm up and flight. Here we examine flight muscle mitochondria physiology and the role of temperature and substrates in oxidative phosphorylation from 3-day old adult Manduca sexta. Mitochondria oxygen flux from flight muscle fibers were temperature sensitive with Q10 values ranging from 1.99 to 2.90, with a large increase in LEAK respiration with increased temperature. Mitochondria oxygen flux was stimulated by carbohydrate-based substrates, with flux through Complex I substrates providing the greatest oxygen flux. Neither proline nor G3P produced an increase in oxygen flux of the flight muscle mitochondria. Unlike other endothermic insects, Manduca are unable to supplement carbohydrate oxidation with either proline or G3P entering through Coenzyme Q and rely on substrates entering at complex I and II.
Collapse
Affiliation(s)
- Sara M Wilmsen
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
| | - Edward Dzialowski
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America
| |
Collapse
|
3
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
4
|
Ando N, Kono T, Ogihara N, Nakamura S, Yokota H, Kanzaki R. Modeling the musculoskeletal system of an insect thorax for flapping flight. BIOINSPIRATION & BIOMIMETICS 2022; 17:066010. [PMID: 36044880 DOI: 10.1088/1748-3190/ac8e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Indirect actuation of the wings via thoracic deformation is a unique mechanism widely observed in flying insect species. The physical properties of the thorax have been intensively studied in terms of their ability to efficiently generate wingbeats. The basic mechanism of indirect wing actuation is generally explained as a lever model on a cross-sectional plane, where the dorsoventral movement of the mesonotum (dorsal exoskeleton of the mesothorax) generated by contractions of indirect muscles actuates the wing. However, the model considers the mesonotum as an ideal flat plane, whereas the mesonotum is hemispherical and becomes locally deformed during flight. Furthermore, the conventional model is two-dimensional; therefore, three-dimensional wing kinematics by indirect muscles have not been studied to date. In this study, we develop structural models of the mesonotum and mesothorax of the hawkmothAgrius convolvuli, reconstructed from serial cross-sectional images. External forces are applied to the models to mimic muscle contraction, and mesonotum deformation and wing trajectories are analyzed using finite element analysis. We find that applying longitudinal strain to the mesonotum to mimic strain by depressor muscle contraction reproduces local deformation comparable to that of the thorax during flight. Furthermore, the phase difference of the forces applied to the depressor and elevator muscles changes the wing trajectory from a figure eight to a circle, which is qualitatively consistent with the tethered flight experiment. These results indicate that the local deformation of the mesonotum due to its morphology and the thoracic deformation via indirect power muscles can modulate three-dimensional wing trajectories.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tokuro Kono
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naomichi Ogihara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Gong H, Ma W, Chen S, Wang G, Khairallah R, Irving T. Localization of the Elastic Proteins in the Flight Muscle of Manduca sexta. Int J Mol Sci 2020; 21:ijms21155504. [PMID: 32752103 PMCID: PMC7432240 DOI: 10.3390/ijms21155504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
The flight muscle of Manduca sexta (DLM1) is an emerging model system for biophysical studies of muscle contraction. Unlike the well-studied indirect flight muscle of Lethocerus and Drosophila, the DLM1 of Manduca is a synchronous muscle, as are the vertebrate cardiac and skeletal muscles. Very little has been published regarding the ultrastructure and protein composition of this muscle. Previous studies have demonstrated that DLM1 express two projectin isoform, two kettin isoforms, and two large Salimus (Sls) isoforms. Such large Sls isoforms have not been observed in the asynchronous flight muscles of Lethocerus and Drosophila. The spatial localization of these proteins was unknown. Here, immuno-localization was used to show that the N-termini of projectin and Salimus are inserted into the Z-band. Projectin spans across the I-band, and the C-terminus is attached to the thick filament in the A-band. The C-terminus of Sls was also located in the A-band. Using confocal microscopy and experimental force-length curves, thin filament lengths were estimated as ~1.5 µm and thick filament lengths were measured as ~2.5 µm. This structural information may help provide an interpretive framework for future studies using this muscle system.
Collapse
Affiliation(s)
- Henry Gong
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA; (H.G.); (W.M.); (S.C.); (G.W.)
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA; (H.G.); (W.M.); (S.C.); (G.W.)
| | - Shaoshuai Chen
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA; (H.G.); (W.M.); (S.C.); (G.W.)
| | - Geng Wang
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA; (H.G.); (W.M.); (S.C.); (G.W.)
| | - Ramzi Khairallah
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA;
| | - Thomas Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA; (H.G.); (W.M.); (S.C.); (G.W.)
- Correspondence: ; Tel.: +1-(312)-567-3489; Fax: +1-(312)-566-3494
| |
Collapse
|
6
|
Lehmann FO, Bartussek J. Neural control and precision of flight muscle activation in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:1-14. [PMID: 27942807 PMCID: PMC5263198 DOI: 10.1007/s00359-016-1133-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.
Collapse
Affiliation(s)
- Fritz-Olaf Lehmann
- Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| | - Jan Bartussek
- Department of Animal Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| |
Collapse
|
7
|
Ayme-Southgate A, Feldman S, Fulmer D. Myofilament proteins in the synchronous flight muscles of Manduca sexta show both similarities and differences to Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:174-182. [PMID: 25797474 DOI: 10.1016/j.ibmb.2015.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee respectively.
Collapse
Affiliation(s)
| | - Samuel Feldman
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Diana Fulmer
- Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|
8
|
Sponberg S, Daniel TL, Fairhall AL. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control. PLoS Comput Biol 2015; 11:e1004168. [PMID: 25919482 PMCID: PMC4412410 DOI: 10.1371/journal.pcbi.1004168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional sensory or motor transformations. Understanding movement control is challenging because the brains of nearly all animals send motor command signals to many muscles, and these signals produce complex movements. In studying animal movement, one cannot always record all the motor commands an animal uses or know all the ways in which movement varies in response. A combined approach is necessary to find the relevant patterns: the changes in movement that correspond to changes in the recorded motor commands. Techniques exist to identify simple patterns in either the motor commands or the movements, but in this paper we develop an approach that identifies patterns in both simultaneously. We use this technique to understand how agile flying insects control aerial turns. The two main downstroke muscles of moths are thought to produce turns by creating a power difference between the left and right wings. The moth’s brain may only need to specify the difference in activation between the two muscles. We discover that moth’s brain actually has independent control over each muscle, and this separate control increases the moth’s ability to adjust turning within a single wingstroke. Our computational approach reveals sophisticated patterns of movement processing even in the small nervous systems of insects.
Collapse
Affiliation(s)
- Simon Sponberg
- Department of Biology, Univ. of Washington, Seattle, Washington, United States of America
- Department of Physiology & Biophysics, Univ. of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Thomas L. Daniel
- Department of Biology, Univ. of Washington, Seattle, Washington, United States of America
- Institute for Neuroengineering, Univ. of Washington, Seattle, Washington, United States of America
- Program in Neuroscience, Univ. of Washington, Seattle, Washington, United States of America
| | - Adrienne L. Fairhall
- Department of Physiology & Biophysics, Univ. of Washington, Seattle, Washington, United States of America
- Institute for Neuroengineering, Univ. of Washington, Seattle, Washington, United States of America
- Program in Neuroscience, Univ. of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Yuan CC, Ma W, Schemmel P, Cheng YS, Liu J, Tsaprailis G, Feldman S, Ayme Southgate A, Irving TC. Elastic proteins in the flight muscle of Manduca sexta. Arch Biochem Biophys 2015; 568:16-27. [PMID: 25602701 PMCID: PMC4684177 DOI: 10.1016/j.abb.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
The flight muscles (DLM1) of the Hawkmoth, Manduca sexta are synchronous, requiring a neural spike for each contraction. Stress/strain curves of skinned DLM1 showed hysteresis indicating the presence of titin-like elastic proteins. Projectin and kettin are titin-like proteins previously identified in Lethocerus and Drosophila flight muscles. Analysis of Manduca muscles with 1% SDS-agarose gels and western blots showed two bands near 1 MDa that cross-reacted with antibodies to Drosophila projectin. Antibodies to Drosophila kettin cross-reacted to bands at ∼500 and ∼700 kDa, but also to bands at ∼1.6 and ∼2.1 MDa, that had not been previously observed in insect flight muscles. Mass spectrometry identified the 2.1 MDa protein as a product of the Sallimus (sls) gene. Analysis of the gene sequence showed that all 4 putative Sallimus and kettin isoforms could be explained as products of alternative splicing of the single sls gene. Both projectin and sallimus isoforms were expressed to higher levels in ventrally located DLM1 subunits, primarily responsible for active work production, as compared to dorsally located subunits, which may act as damped springs. The different expression levels of the 2 projectin isoforms and 4 sallimus/kettin isoforms may be adaptations to the specific requirements of individual muscle subunits.
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Weikang Ma
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Peter Schemmel
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Yu-Shu Cheng
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Jiangmin Liu
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | | | - Samuel Feldman
- Dept. of Biology, College of Charleston, Charleston, SC, USA
| | | | - Thomas C Irving
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
10
|
Crespo JG, Vickers NJ, Goller F. Female pheromones modulate flight muscle activation patterns during preflight warm-up. J Neurophysiol 2013; 110:862-71. [PMID: 23699056 DOI: 10.1152/jn.00871.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle.
Collapse
Affiliation(s)
- José G Crespo
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
11
|
George NT, Irving TC, Williams CD, Daniel TL. The cross-bridge spring: can cool muscles store elastic energy? Science 2013; 340:1217-20. [PMID: 23618763 DOI: 10.1126/science.1229573] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Muscles not only generate force. They may act as springs, providing energy storage to drive locomotion. Although extensible myofilaments are implicated as sites of energy storage, we show that intramuscular temperature gradients may enable molecular motors (cross-bridges) to store elastic strain energy. By using time-resolved small-angle x-ray diffraction paired with in situ measurements of mechanical energy exchange in flight muscles of Manduca sexta, we produced high-speed movies of x-ray equatorial reflections, indicating cross-bridge association with myofilaments. A temperature gradient within the flight muscle leads to lower cross-bridge cycling in the cooler regions. Those cross-bridges could elastically return energy at the extrema of muscle lengthening and shortening, helping drive cyclic wing motions. These results suggest that cross-bridges can perform functions other than contraction, acting as molecular links for elastic energy storage.
Collapse
Affiliation(s)
- N T George
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Sponberg S, Daniel TL. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles. Proc Biol Sci 2012. [PMID: 22833272 DOI: 10.1098/rspb2012.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.
Collapse
Affiliation(s)
- S Sponberg
- Department of Biology, University of Washington, , Seattle, WA 98195, USA.
| | | |
Collapse
|
14
|
Sponberg S, Daniel TL. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles. Proc Biol Sci 2012; 279:3958-66. [PMID: 22833272 DOI: 10.1098/rspb.2012.1085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.
Collapse
Affiliation(s)
- S Sponberg
- Department of Biology, University of Washington, , Seattle, WA 98195, USA.
| | | |
Collapse
|
15
|
George NT, Sponberg S, Daniel TL. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta. ACTA ACUST UNITED AC 2012; 215:471-9. [PMID: 22246256 DOI: 10.1242/jeb.062901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles.
Collapse
Affiliation(s)
- N T George
- University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|