1
|
Eloi I, Silva-Neto WA, Hattori WT, Araújo A. Adapting to Uncertainty: Foraging Strategies in Dinoponera quadriceps (Formicidae: Ponerinae). INSECTS 2024; 15:948. [PMID: 39769550 PMCID: PMC11676486 DOI: 10.3390/insects15120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
When searching for food, animals often make decisions about where to go, how long to stay in a foraging area, and whether to return to the most recently visited spot. These decisions can be enhanced by cognitive traits and adjusted based on previous experience. In social insects, such as ants, foraging efficiency has an impact at both the individual and colony levels. The present study investigated the effect of the distance to, capture success, food size, and the reward rate on decisions of where to forage in Dinoponera quadriceps, a ponerine ant that forages solitarily and makes individual foraging decisions, in laboratory studies. We also investigated the influence of learning on the workers' performance over successive trips to search for food by measuring the patch residence time in each foraging trip. Four scenarios were created that differed in the food reward rates, the food size offered, and the distances from the colony to the food site. Our work demonstrated that as a general rule, the D. quadriceps workers return to the place where a prey item was found on the previous trip, regardless of the distance, food size, and reward rate. When the ants did not capture prey, they were more likely to change their route to search for food. Our results also indicated a learning process for the routes of exploration, as well as the food site conditions for exploration. After repeated trips, the foragers reduced the patch residence time in areas where they did not capture food and quickly changed foraging areas, increasing their foraging efficiency.
Collapse
Affiliation(s)
- Igor Eloi
- Laboratório de Biologia Comportamental, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.E.); (W.A.S.-N.)
| | - Waldemar Alves Silva-Neto
- Laboratório de Biologia Comportamental, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.E.); (W.A.S.-N.)
| | - Wallisen Tadashi Hattori
- Departamento de Saúde Coletiva, Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia 38405-320, MG, Brazil;
| | - Arrilton Araújo
- Laboratório de Biologia Comportamental, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil; (I.E.); (W.A.S.-N.)
| |
Collapse
|
2
|
Strube-Bloss M, Günzel P, Nebauer CA, Spaethe J. Visual accelerated and olfactory decelerated responses during multimodal learning in honeybees. Front Physiol 2023; 14:1257465. [PMID: 37929207 PMCID: PMC10624174 DOI: 10.3389/fphys.2023.1257465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
To obtain accurate information about the outside world and to make appropriate decisions, animals often combine information from different sensory pathways to form a comprehensive representation of their environment. This process of multimodal integration is poorly understood, but it is common view that the single elements of a multimodal stimulus influence each other's perception by enhancing or suppressing their neural representation. The neuronal level of interference might be manifold, for instance, an enhancement might increase, whereas suppression might decrease behavioural response times. In order to investigate this in an insect behavioural model, the Western honeybee, we trained individual bees to associate a sugar reward with an odour, a light, or a combined olfactory-visual stimulus, using the proboscis extension response (PER). We precisely monitored the PER latency (the time between stimulus onset and the first response of the proboscis) by recording the muscle M17, which innervates the proboscis. We found that odours evoked a fast response, whereas visual stimuli elicited a delayed PER. Interestingly, the combined stimulus showed a response time in between the unimodal stimuli, suggesting that olfactory-visual integration accelerates visual responses but decelerates the olfactory response time.
Collapse
Affiliation(s)
- Martin Strube-Bloss
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Patrick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Carmen A. Nebauer
- Department of Plant-Insect-Interaction, Life Science Systems, Technical University of Munich, Freising, Germany
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Kraft N, Muenz TS, Reinhard S, Werner C, Sauer M, Groh C, Rössler W. Expansion microscopy in honeybee brains for high-resolution neuroanatomical analyses in social insects. Cell Tissue Res 2023; 393:489-506. [PMID: 37421435 PMCID: PMC10484815 DOI: 10.1007/s00441-023-03803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
The diffraction limit of light microscopy poses a problem that is frequently faced in structural analyses of social insect brains. With the introduction of expansion microscopy (ExM), a tool became available to overcome this limitation by isotropic physical expansion of preserved specimens. Our analyses focus on synaptic microcircuits (microglomeruli, MG) in the mushroom body (MB) of social insects, high-order brain centers for sensory integration, learning, and memory. MG undergo significant structural reorganizations with age, sensory experience, and during long-term memory formation. However, the changes in subcellular architecture involved in this plasticity have only partially been accessed yet. Using the western honeybee Apis mellifera as an experimental model, we established ExM for the first time in a social insect species and applied it to investigate plasticity in synaptic microcircuits within MG of the MB calyces. Using combinations of antibody staining and neuronal tracing, we demonstrate that this technique enables quantitative and qualitative analyses of structural neuronal plasticity at high resolution in a social insect brain.
Collapse
Affiliation(s)
- Nadine Kraft
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany.
| | - Thomas S Muenz
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Claudia Groh
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology and Sociobiology (Zoology II), Theodor-Boveri-Institute, Biocenter, Julius Maximilian University, Würzburg, 97074, Germany
| |
Collapse
|
4
|
Martins JR, Pinheiro DG, Ahmed ACC, Giuliatti S, Mizzen CA, Bitondi MMG. Genome-wide analysis of the chromatin sites targeted by HEX 70a storage protein in the honeybee brain and fat body. INSECT MOLECULAR BIOLOGY 2023; 32:277-304. [PMID: 36630080 DOI: 10.1111/imb.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/12/2022] [Indexed: 05/15/2023]
Abstract
Hexamerins, the proteins massively stored in the larval haemolymph of insects, are gradually used throughout metamorphosis as a source of raw material and energy for the development of adult tissues. Such behaviour defined hexamerins as storage proteins. Immunofluorescence experiments coupled with confocal microscopy show a hexamerin, HEX 70a, in the nucleus of the brain and fat body cells from honeybee workers, an unexpected localization for a storage protein. HEX 70a colocalizes with fibrillarin, a nucleolar-specific protein and H3 histone, thus suggesting a potential role as a chromatin-binding protein. This was investigated through chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq). The significant HEX 70a-DNA binding sites were mainly localized at the intergenic, promoter and intronic regions. HEX 70a targeted DNA stretches mapped to the genomic regions encompassing genes with relevant functional attributes. Several HEX 70a targeted genes were associated with H3K27ac or/and H3K27me3, known as active and repressive histone marks. Brain and fat body tissues shared a fraction of the HEX 70 targeted genes, and tissue-specific targets were also detected. The presence of overrepresented DNA motifs in the binding sites is consistent with specific HEX 70a-chromatin association. In addition, a search for HEX 70a targets in RNA-seq public libraries of fat bodies from nurses and foragers revealed differentially expressed targets displaying hex 70a-correlated developmental expression, thus supporting a regulatory activity for HEX 70a. Our results support the premise that HEX 70a is a moonlighting protein that binds chromatin and has roles in the brain and fat body cell nuclei, apart from its canonical role as a storage protein.
Collapse
Affiliation(s)
- Juliana R Martins
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, Brazil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil
| | - Amy C C Ahmed
- University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, USA
| | - Silvana Giuliatti
- Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, Brazil
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Márcia M G Bitondi
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Rössler W, Grob R, Fleischmann PN. The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01600-y. [DOI: 10.1007/s00359-022-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
AbstractEfficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Collapse
|
6
|
Dvořáček J, Kodrík D. Drug effect and addiction research with insects - From Drosophila to collective reward in honeybees. Neurosci Biobehav Rev 2022; 140:104816. [PMID: 35940307 DOI: 10.1016/j.neubiorev.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| |
Collapse
|
7
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Schmalz F, El Jundi B, Rössler W, Strube-Bloss M. Categorizing Visual Information in Subpopulations of Honeybee Mushroom Body Output Neurons. Front Physiol 2022; 13:866807. [PMID: 35574496 PMCID: PMC9092450 DOI: 10.3389/fphys.2022.866807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Multisensory integration plays a central role in perception, as all behaviors usually require the input of different sensory signals. For instance, for a foraging honeybee the association of a food source includes the combination of olfactory and visual cues to be categorized as a flower. Moreover, homing after successful foraging using celestial cues and the panoramic scenery may be dominated by visual cues. Hence, dependent on the context, one modality might be leading and influence the processing of other modalities. To unravel the complex neural mechanisms behind this process we studied honeybee mushroom body output neurons (MBON). MBONs represent the first processing level after olfactory-visual convergence in the honeybee brain. This was physiologically confirmed in our previous study by characterizing a subpopulation of multisensory MBONs. These neurons categorize incoming sensory inputs into olfactory, visual, and olfactory-visual information. However, in addition to multisensory units a prominent population of MBONs was sensitive to visual cues only. Therefore, we asked which visual features might be represented at this high-order integration level. Using extracellular, multi-unit recordings in combination with visual and olfactory stimulation, we separated MBONs with multisensory responses from purely visually driven MBONs. Further analysis revealed, for the first time, that visually driven MBONs of both groups encode detailed aspects within this individual modality, such as light intensity and light identity. Moreover, we show that these features are separated by different MBON subpopulations, for example by extracting information about brightness and wavelength. Most interestingly, the latter MBON population was tuned to separate UV-light from other light stimuli, which were only poorly differentiated from each other. A third MBON subpopulation was neither tuned to brightness nor to wavelength and encoded the general presence of light. Taken together, our results support the view that the mushroom body, a high-order sensory integration, learning and memory center in the insect brain, categorizes sensory information by separating different behaviorally relevant aspects of the multisensory scenery and that these categories are channeled into distinct MBON subpopulations.
Collapse
Affiliation(s)
- Fabian Schmalz
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Martin Strube-Bloss
- Department of Biological Cybernetics and Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
9
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
10
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
11
|
Groh C, Rössler W. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee. INSECTS 2020; 11:insects11010043. [PMID: 31936165 PMCID: PMC7023465 DOI: 10.3390/insects11010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/18/2023]
Abstract
Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.
Collapse
|
12
|
Zwaka H, Bartels R, Grünewald B, Menzel R. Neural Organization of A3 Mushroom Body Extrinsic Neurons in the Honeybee Brain. Front Neuroanat 2018; 12:57. [PMID: 30127725 PMCID: PMC6089341 DOI: 10.3389/fnana.2018.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
In the insect brain, the mushroom body is a higher order brain area that is key to memory formation and sensory processing. Mushroom body (MB) extrinsic neurons leaving the output region of the MB, the lobes and the peduncle, are thought to be especially important in these processes. In the honeybee brain, a distinct class of MB extrinsic neurons, A3 neurons, are implicated in playing a role in learning. Their MB arborisations are either restricted to the lobes and the peduncle, here called A3 lobe connecting neurons, or they provide feedback information from the lobes to the input region of the MB, the calyces, here called A3 feedback neurons. In this study, we analyzed the morphology of individual A3 lobe connecting and feedback neurons using confocal imaging. A3 feedback neurons were previously assumed to innervate each lip compartment homogenously. We demonstrate here that A3 feedback neurons do not innervate whole subcompartments, but rather innervate zones of varying sizes in the MB lip, collar, and basal ring. We describe for the first time the anatomical details of A3 lobe connecting neurons and show that their connection pattern in the lobes resemble those of A3 feedback cells. Previous studies showed that A3 feedback neurons mostly connect zones of the vertical lobe that receive input from Kenyon cells of distinct calycal subcompartments with the corresponding subcompartments of the calyces. We can show that this also applies to the neck of the peduncle and the medial lobe, where both types of A3 neurons arborize only in corresponding zones in the calycal subcompartments. Some A3 lobe connecting neurons however connect multiple vertical lobe areas. Contrarily, in the medial lobe, the A3 neurons only innervate one division. We found evidence for both input and output areas in the vertical lobe. Thus, A3 neurons are more diverse than previously thought. The understanding of their detailed anatomy might enable us to derive circuit models for learning and memory and test physiological data.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
- Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Ruth Bartels
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde Oberursel, Goethe University Frankfurt, Frankfurt, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
13
|
Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx. eNeuro 2018; 5:eN-NWR-0128-18. [PMID: 29938214 PMCID: PMC6011417 DOI: 10.1523/eneuro.0128-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.
Collapse
|
14
|
Strube-Bloss MF, Nawrot MP, Menzel R. Neural correlates of side-specific odour memory in mushroom body output neurons. Proc Biol Sci 2017; 283:rspb.2016.1270. [PMID: 27974514 DOI: 10.1098/rspb.2016.1270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/10/2016] [Indexed: 11/12/2022] Open
Abstract
Humans and other mammals as well as honeybees learn a unilateral association between an olfactory stimulus presented to one side and a reward. In all of them, the learned association can be behaviourally retrieved via contralateral stimulation, suggesting inter-hemispheric communication. However, the underlying neuronal circuits are largely unknown and neural correlates of across-brain-side plasticity have yet not been demonstrated. We report neural plasticity that reflects lateral integration after side-specific odour reward conditioning. Mushroom body output neurons that did not respond initially to contralateral olfactory stimulation developed a unique and stable representation of the rewarded compound stimulus (side and odour) predicting its value during memory retention. The encoding of the reward-associated compound stimulus is delayed by about 40 ms compared with unrewarded neural activity, indicating an increased computation time for the read-out after lateral integration.
Collapse
Affiliation(s)
- Martin F Strube-Bloss
- Department of Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute of Bioscience, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin P Nawrot
- Martin Paul Nawrot, Computational Systems Neuroscience, Institute for Zoology, Department of Biology, University of Cologne, Biocenter University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Randolf Menzel
- Randolf Menzel, Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28/30, 14195 Berlin, Germany
| |
Collapse
|
15
|
Giraldo YM, Rusakov A, Diloreto A, Kordek A, Traniello JFA. Age, worksite location, neuromodulators, and task performance in the ant Pheidole dentata. Behav Ecol Sociobiol 2016; 70:1441-1455. [PMID: 28042198 DOI: 10.1007/s00265-016-2153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Social insect workers modify task performance according to age-related schedules of behavioral development, and/or changing colony labor requirements based on flexible responses that may be independent of age. Using known-age minor workers of the ant Pheidole dentata throughout 68% of their 140-day laboratory lifespan, we asked whether workers found inside or outside the nest differed in task performance and if behaviors were correlated with and/or causally linked to changes in brain serotonin (5HT) and dopamine (DA). Our results suggest that task performance patterns of individually assayed minors collected at these two spatially different worksites were independent of age. Outside-nest minors displayed significantly higher levels of predatory behavior and greater activity than inside-nest minors, but these groups did not differ in brood care or phototaxis. We examined the relationship of 5HT and DA to these behaviors in known-age minors by quantifying individual brain titers. Both monoamines did not increase significantly from 20 to 95 days of age. DA did not appear to directly regulate worksite location, although titers were significantly higher in outside-nest than inside-nest workers. Pharmacological depletion of 5HT did not affect nursing, predation, phototaxis or activity. Our results suggest that worker task capabilities are independent of age beyond 20 days, and only predatory behavior can be consistently predicted by spatial location. This could reflect worker flexibility or variability in the behavior of individuals collected at each location, which could be influenced by complex interactions between age, worksite location, social interactions, neuromodulators, and other environmental and internal regulators of behavior.
Collapse
Affiliation(s)
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
16
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, Dunedin, Otago, New Zealand
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- * E-mail:
| | - Laurent Soustelle
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Marie-Julie Gherardi
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | - Daniel Fourmy
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Marc Devaud
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| | - Isabelle Massou
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| |
Collapse
|
17
|
Filla I, Menzel R. Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate context and cue values upon attentional stimulus selection. J Neurophysiol 2015. [PMID: 26224779 DOI: 10.1152/jn.00776.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multimodal GABA-immunoreactive feedback neurons in the honeybee brain connecting the output region of the mushroom body with its input are expected to tune the input to the mushroom body in an experience-dependent way. These neurons are known to change their rate responses to learned olfactory stimuli. In this work we ask whether these neurons also transmit learned attentional effects during multisensory integration. We find that a visual context and an olfactory cue change the rate responses of these neurons after learning according to the associated values of both context and cue. The learned visual context promotes attentional response selection by enhancing olfactory stimulus valuation at both the behavioral and the neural level. During a rewarded visual context, bees reacted faster and more reliably to a rewarded odor. We interpreted this as the result of the observed enhanced neural discharge toward the odor. An unrewarded context reduced already low rate responses to the unrewarded odor. In addition to stimulus valuation, these feedback neurons generate a neural error signal after an incorrect behavioral response. This might act as a learning signal in feedback neurons. All of these effects were exclusively found in trials in which the animal prepares for a motor response that happens during attentional stimulus selection. We discuss possible implications of the results for the feedback connections of the mushroom body.
Collapse
Affiliation(s)
- Ina Filla
- Institute of Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Urlacher E, Tarr IS, Mercer AR. Social modulation of stress reactivity and learning in young worker honey bees. PLoS One 2014; 9:e113630. [PMID: 25470128 PMCID: PMC4254648 DOI: 10.1371/journal.pone.0113630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
- * E-mail:
| | - Ingrid S. Tarr
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| | - Alison R. Mercer
- Department of Zoology, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front Neural Circuits 2014; 8:35. [PMID: 24782716 PMCID: PMC3988396 DOI: 10.3389/fncir.2014.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs) are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region) of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has pre-synaptic terminals in the calyx and post-synaptic branches in the MB lobes (output axonal area). We call this neuron the larval anterior paired lateral (APL) neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP) suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs), but few contacts with incoming projection neurons (PNs). Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a manner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.
Collapse
Affiliation(s)
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Takeshi Awasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge Cambridge, UK
| |
Collapse
|
20
|
Menzel R. The insect mushroom body, an experience-dependent recoding device. ACTA ACUST UNITED AC 2014; 108:84-95. [DOI: 10.1016/j.jphysparis.2014.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
21
|
Abstract
Across animals, there is remarkable diversity in behavior. Modern genomic approaches have made it possible to identify the molecular underpinnings of varied behavioral phenotypes. By examining species with plastic phenotypes we have begun to understand the dynamic and flexible nature of neural transcriptomes and identified gene modules associated with variation in social and reproductive behaviors in diverse species. Importantly, it is becoming increasingly clear that some candidate genes and gene networks are involved in complex social behaviors across even divergent species, yet few comparative transcriptomics studies have been conducted that examine a specific behavior across species. We discuss the implications of a range of important and insightful studies that have increased our understanding of the neurogenomics of behavioral plasticity. Despite its successes, behavioral genomics has been criticized for its lack of hypotheses and causative insights. We propose here a novel avenue to overcome some of these short-comings by complementing "forward genomics" studies (i.e., from phenotype to behaviorally relevant gene modules) with a "reverse genomics" approach (i.e., manipulating novel gene modules to examine effects on behavior, hormones, and the genome itself) to examine the functional causes and consequences of differential gene expression patterns. We discuss how several established approaches (such as pharmacological manipulations of a novel candidate pathway, fine scale mapping of novel candidate gene expression in the brain, or identifying direct targets of a novel transcription factor of interest) can be used in combination with the analysis of the accompanying neurogenomic responses to reveal unexpected biological processes. The integration of forward and reverse genomics will move the field beyond statistical associations and yield great insights into the neural and molecular control of social behavior and its evolution.
Collapse
|
22
|
Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:183-95. [DOI: 10.1007/s00359-013-0877-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/29/2022]
|
23
|
Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently. J Neurosci 2013; 33:7154-64. [PMID: 23616525 DOI: 10.1523/jneurosci.1331-12.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Free-flying honeybees (Apis mellifera carnica) are known to learn the context to solve discrimination tasks. Here we apply classical conditioning of the proboscis extension response in restrained bees in combination with single-unit extracellular recordings from mushroom body (MB) extrinsic neurons elucidating the neural correlates of context-dependent olfactory discrimination. The contexts were light, colors, and temperatures, either alone or in combination. We found that bees learn context rules quickly and use them for better discrimination. They also solved a transwitching and a cue/context reversal task. Neurons extrinsic to the α lobe of the MB reduced the responses to the rewarded odor, whereas they increased their responses to the context. These results indicate that MB extrinsic neurons encode cues and contexts differently. Data are discussed with reference to MB function.
Collapse
|
24
|
Abstract
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Collapse
|