1
|
Anslan S, Sachs M, Rancilhac L, Brinkmann H, Petersen J, Künzel S, Schwarz A, Arndt H, Kerney R, Vences M. Diversity and substrate-specificity of green algae and other micro-eukaryotes colonizing amphibian clutches in Germany, revealed by DNA metabarcoding. Naturwissenschaften 2021; 108:29. [PMID: 34181110 PMCID: PMC8238718 DOI: 10.1007/s00114-021-01734-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 02/17/2023]
Abstract
Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly determined the community compositions of algae and other micro-eukaryotes. Therefore, as expected, the frog clutch-associated communities formed clearly distinct clusters. Clutch-associated communities in our study were structured by a plethora of not only green algae, but also diatoms and other ochrophytes. The most abundant operational taxonomic units (OTUs) in clutch samples were taxa from Chlamydomonas, Oophila, but also from Nitzschia and other ochrophytes. Sequences of Oophila "Clade B" were found exclusively in clutches. Based on additional phylogenetic analyses of 18S rDNA and of a matrix of 18 nuclear genes derived from transcriptomes, we confirmed in our samples the existence of two distinct clades of green algae assigned to Oophila in past studies. We hypothesize that "Clade B" algae correspond to the true Oophila, whereas "Clade A" algae are a series of Chlorococcum species that, along with other green algae, ochrophytes and protists, colonize amphibian clutches opportunistically and are often cultured from clutch samples due to their robust growth performance. The clutch-associated communities were subject to filtering by sampling location, suggesting that the taxa colonizing amphibian clutches can drastically differ depending on environmental conditions.
Collapse
Affiliation(s)
- Sten Anslan
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Maria Sachs
- Institute of Zoology, University of Cologne, Zülpicherstr. 47b, 50674, Köln, Germany
| | - Lois Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hartmut Arndt
- Institute of Zoology, University of Cologne, Zülpicherstr. 47b, 50674, Köln, Germany
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Chávez MN, Moellhoff N, Schenck TL, Egaña JT, Nickelsen J. Photosymbiosis for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:577204. [PMID: 33123516 PMCID: PMC7573207 DOI: 10.3389/fbioe.2020.577204] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. “Photosynthetic strategies,” based on the recognition that photosynthesis is the source of all oxygen, offer a revolutionary and promising solution to pathologies related to tissue hypoxia. These approaches, which have been under development over the past 20 years, seek to harness photosynthetic microorganisms as a local and controllable source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. To date, their applications extend from the in vitro creation of artificial human tissues to the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, while their potential use in other medical approaches has just begun to be explored. This review provides an overview of the state of the art of photosynthetic technologies and its innovative applications, as well as an expert assessment of the major challenges and how they can be addressed.
Collapse
Affiliation(s)
- Myra N Chávez
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - Thilo L Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
D’Errico M, Kennedy C, Hale RE. Egg mass polymorphism in Ambystoma maculatum is not associated with larval performance or survival, or with cell density of the algal symbiont Oophila amblystomatis. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10083-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Nyholm SV. In the beginning: egg-microbe interactions and consequences for animal hosts. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190593. [PMID: 32772674 PMCID: PMC7435154 DOI: 10.1098/rstb.2019.0593] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Microorganisms are associated with the eggs of many animals. For some hosts, the egg serves as the ideal environment for the vertical transmission of beneficial symbionts between generations, while some bacteria use the egg to parasitize their hosts. In a number of animal groups, egg microbiomes often perform other essential functions. The eggs of aquatic and some terrestrial animals are especially susceptible to fouling and disease since they are exposed to high densities of microorganisms. To overcome this challenge, some hosts form beneficial associations with microorganisms, directly incorporating microbes and/or microbial products on or in their eggs to inhibit pathogens and biofouling. Other functional roles for egg-associated microbiomes are hypothesized to involve oxygen and nutrient acquisition. Although some egg-associated microbiomes are correlated with increased host fitness and are essential for successful development, the mechanisms that lead to such outcomes are often not well understood. This review article will discuss different functions of egg microbiomes and how these associations have influenced the biology and evolution of animal hosts. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269USA
| |
Collapse
|
5
|
Burns JA, Kerney R, Duhamel S. Heterotrophic Carbon Fixation in a Salamander-Alga Symbiosis. Front Microbiol 2020; 11:1815. [PMID: 32849422 PMCID: PMC7417444 DOI: 10.3389/fmicb.2020.01815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The unique symbiosis between a vertebrate salamander, Ambystoma maculatum, and unicellular green alga, Oophila amblystomatis, involves multiple modes of interaction. These include an ectosymbiotic interaction where the alga colonizes the egg capsule, and an intracellular interaction where the alga enters tissues and cells of the salamander. One common interaction in mutualist photosymbioses is the transfer of photosynthate from the algal symbiont to the host animal. In the A. maculatum-O. amblystomatis interaction, there is conflicting evidence regarding whether the algae in the egg capsule transfer chemical energy captured during photosynthesis to the developing salamander embryo. In experiments where we took care to separate the carbon fixation contributions of the salamander embryo and algal symbionts, we show that inorganic carbon fixed by A. maculatum embryos reaches 2% of the inorganic carbon fixed by O. amblystomatis algae within an egg capsule after 2 h in the light. After 2 h in the dark, inorganic carbon fixed by A. maculatum embryos is 800% of the carbon fixed by O. amblystomatis algae within an egg capsule. Using photosynthesis inhibitors, we show that A. maculatum embryos and O. amblystomatis algae compete for available inorganic carbon within the egg capsule environment. Our results confirm earlier studies suggesting a role of heterotrophic carbon fixation during vertebrate embryonic development. Our results also show that the considerable capacity of developing A. maculatum embryos for inorganic carbon fixation precludes our ability to distinguish any minor role of photosynthetically transferred carbon from algal symbionts to host salamanders using bicarbonate introduced to the egg system as a marker.
Collapse
Affiliation(s)
- John A. Burns
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, United States
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
| | - Solange Duhamel
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, United States
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Oophila is monophyletic within a three-taxon eukaryotic microbiome in egg masses of the salamander Ambystoma maculatum. Symbiosis 2020. [DOI: 10.1007/s13199-020-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Small DP, Bishop CD. Physiological benefits and latent effects of an algal-salamander symbiosis. Comp Biochem Physiol A Mol Integr Physiol 2020; 246:110715. [PMID: 32320756 DOI: 10.1016/j.cbpa.2020.110715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
Embryos of the salamander Ambystoma maculatum (Shaw) and the uni-cellular green alga Oophila amblystomatis (Lambert ex Wille) have evolved a resource exchange mutualism. Whereas some of the benefits of the symbiosis to embryos are known, the physiological limitations of the relationship to embryos and carry over or latent effects on larvae are not. To determine the impact of the relationship across life history stages, we measured the growth, survival, and metabolic rate in response to hypoxia of salamander embryos reared under 0-h light (algae absent), 14-h light (control - algae present, fluctuating light conditions) and 24-h light (algae present, chronic light conditions) and the resulting larvae two-weeks post hatch. Embryos reared under 0-h light demonstrated decreased growth and survival compared to 14- and 24-h light, with no effect on metabolic rates or the response of metabolic rates to declining oxygen partial pressure (pO2). Conversely, larvae from embryos reared under 0-h light exhibited compensatory growth during the two-week larval rearing period, with body sizes matching those from the 14-h light treatment. Larvae from embryos reared under 24-h light had lower wet body mass and LT50 values upon starvation compared to those reared under 14-h light. Coupled with the lowest metabolic rates under normoxic pO2 levels, this indicates the presence of negative latent effects. We discuss the findings in relation to the effect of the symbiotic relationship on hypoxia tolerance and larval fitness with respect to the presence of compensatory growth and negative latent effects.
Collapse
Affiliation(s)
- Daniel P Small
- Biology Department, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, Nova Scotia B2G 1S7, Canada; Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Cory D Bishop
- Biology Department, St. Francis Xavier University, 2320 Notre Dame Avenue, Antigonish, Nova Scotia B2G 1S7, Canada
| |
Collapse
|
8
|
Phylogeny of the egg-loving green alga Oophila amblystomatis (Chlamydomonadales) and its response to the herbicides atrazine and 2,4-D. Symbiosis 2018. [DOI: 10.1007/s13199-018-0564-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Burns JA, Zhang H, Hill E, Kim E, Kerney R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 2017; 6:e22054. [PMID: 28462779 PMCID: PMC5413350 DOI: 10.7554/elife.22054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial.
Collapse
Affiliation(s)
- John A Burns
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Huanjia Zhang
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Elizabeth Hill
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, United States
| |
Collapse
|
10
|
Abstract
Transcriptomics is shedding new light on the relationship between photosynthetic algae and salamander eggs.
Collapse
Affiliation(s)
- Steven G Ball
- Institute for Functional and Structural Glycobiology (UGSF), UMR8576 University of Lille/CNRS, Villeneuve d'Ascq, France
| | - Ugo Cenci
- Institute for Functional and Structural Glycobiology (UGSF), UMR8576 University of Lille/CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep 2016; 6:19867. [PMID: 26804034 PMCID: PMC4726165 DOI: 10.1038/srep19867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level.
Collapse
|
12
|
Hale RE, Miller N, Francis RA, Kennedy C. Does breeding ecology alter selection on developmental and life history traits? A case study in two Ambystomatid salamanders. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Grawunder D, Hambleton EA, Bucher M, Wolfowicz I, Bechtoldt N, Guse A. Induction of Gametogenesis in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep 2015; 5:15677. [PMID: 26498008 PMCID: PMC4620495 DOI: 10.1038/srep15677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
Endosymbiosis is widespread among cnidarians and is of high ecological relevance. The tropical sea anemone Aiptasia sp. is a laboratory model system for endosymbiosis between reef-building corals and photosynthetic dinoflagellate algae of the genus Symbiodinium. Here we identify the key environmental cues to induce reproducible spawning in Aiptasia under controlled laboratory conditions. We find that simulating a lunar cycle with blue-wavelength light is necessary to promote abundant gamete production and synchronous release in well-fed animals. Sexual reproduction rates are genetically determined and differ among clonal lines under similar conditions. We also find the inverse difference in rates of asexual reproduction. This study provides the requisite basis for further development of the Aiptasia model system, allowing analysis of basic cellular and molecular mechanisms in the laboratory as well as investigations of broad questions of ecological and evolutionary relevance.
Collapse
Affiliation(s)
- Désirée Grawunder
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Elizabeth A Hambleton
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Madeline Bucher
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Iliona Wolfowicz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany.,University of Porto, Porto 4200-465, Portugal
| | - Natascha Bechtoldt
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
14
|
Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:147-53. [PMID: 26318329 DOI: 10.1016/j.pbi.2015.07.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 05/27/2023]
Abstract
Microalgae undertake a wide range of mutualistic interactions with bacteria. Here we consider how transcriptomic, metagenomic and metabolomic approaches have been combined with microbiological and biochemical analyses to expand our understanding of algal-bacterial interactions. Identification of the major bacterial species associated with algae indicates that specific bacterial groups, particularly the alpha-Proteobacteria, are found more frequently, suggesting that these may have the means to initiate and maintain symbiotic relationships. Nutrient exchange is frequently the basis of algal-bacterial mutualism, and as the compounds involved are characterised, evidence is accumulating that these are complex and specific molecules, offering opportunities for signalling processes and regulation rather than merely passive diffusion. At the same time, it is clear that the interactions are not static, but can be initiated and broken in response to environmental and developmental cues.
Collapse
Affiliation(s)
- Matthew B Cooper
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
15
|
|
16
|
Kim E, Lin Y, Kerney R, Blumenberg L, Bishop C. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses. PLoS One 2014; 9:e108915. [PMID: 25393119 PMCID: PMC4230919 DOI: 10.1371/journal.pone.0108915] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga “Oophila amblystomatis” (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the ‘Oophila’ clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.
Collapse
Affiliation(s)
- Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
- * E-mail: (CB); (EK)
| | - Yuan Lin
- Department of Biology, St. Francis-Xavier University, Antigonish, Nova Scotia, Canada
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, United States of America
| | - Lili Blumenberg
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Cory Bishop
- Department of Biology, St. Francis-Xavier University, Antigonish, Nova Scotia, Canada
- * E-mail: (CB); (EK)
| |
Collapse
|
17
|
The roles of oxygen and ammonia in the symbiotic relationship between the spotted salamander Ambystoma maculatum and the green alga Oophila amblystomatis during embryonic development. Symbiosis 2014. [DOI: 10.1007/s13199-014-0297-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Rodríguez-Gil JL, Brain R, Baxter L, Ruffell S, McConkey B, Solomon K, Hanson M. Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2566-2575. [PMID: 25113146 DOI: 10.1002/etc.2711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Eggs of the yellow-spotted salamander (Ambystoma maculatum) have a symbiotic relationship with green algae. It has been suggested that contaminants that are preferentially toxic to algae, such as herbicides, may impair the symbiont and, hence, indirectly affect the development of the salamander embryo. To enable testing under near-standard conditions for first-tier toxicity screening, the authors isolated the alga from field-collected eggs and identified conditions providing exponential growth rates in the apparent asexual phase of the alga. This approach provided a uniform, single-species culture, facilitating assessment of common toxicity end points and comparison of sensitivity relative to other species. Sequencing of the 18s ribosomal DNA indicated that the isolated alga is closely related to the recently described Oophila amblystomatis but is more similar to other known Chlamydomonas species, suggesting possible biogeographical variability in the genetic identity of the algal symbiont. After a tiered approach to culturing method refinement, a modified Bristol's media with 1 mM NH4 (+) as nitrogen source was found to provide suitable conditions for toxicity testing at 18 °C and 200 µmol m(-2) s(-1) photosynthetically active radiation (PAR) on a 24-h light cycle. The validity of the approach was demonstrated with Zn(2+) as a reference toxicant. Overall, the present study shows that screening for direct effects of contaminants on the algal symbiont without the presence of the host salamander is possible under certain laboratory conditions.
Collapse
Affiliation(s)
- José Luis Rodríguez-Gil
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Graham ER, McKie-Krisberg ZM, Sanders RW. Photosynthetic carbon from algal symbionts peaks during the latter stages of embryonic development in the salamander Ambystoma maculatum. BMC Res Notes 2014; 7:764. [PMID: 25348817 PMCID: PMC4221728 DOI: 10.1186/1756-0500-7-764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Background It was recently discovered that symbiotic algae in the eggs of the salamander Ambystoma maculatum translocate fixed carbon from photosynthesis to developing embryos. Fixed carbon translocation was shown in embryos at one time point during development, however, it was unknown if fixed carbon translocation occurs throughout all developmental stages. Findings In this study, fixed carbon translocation was measured in salamander eggs at six time points over the latter half of development. Fixed carbon translocation did not occur until the middle tailbud portion of development (stages 26–30), and translocation was measured in 20% or less of eggs sampled. Peak carbon translocation occurred during the late tailbud phase of development (stages 31–35), where as much as 87% of eggs sampled showed translocation, and average percent translocation was 6.5%. During the final stages of development, fixed carbon translocation declined, and translocation was not detected in embryos five days prior to hatching. Conclusions The onset of fixed carbon translocation from Oophila to A. maculatum embryos during the second half of embryonic development is likely due to the corresponding settlement and concentration of Oophila in the inner egg envelope. In addition, carbon translocation ceases in late stage embryos as the inner egg envelope thins and ruptures in preparation for hatching.
Collapse
Affiliation(s)
- Erin R Graham
- Department of Biology, Temple University, 1900 N, 12th St,, Philadelphia, PA 19122, USA.
| | | | | |
Collapse
|
20
|
Baxter L, Brain R, Rodriguez-Gil JL, Hosmer A, Solomon K, Hanson M. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1858-1864. [PMID: 24782078 DOI: 10.1002/etc.2629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
In a rare example of autotroph-vertebrate endosymbiosis, eggs of the yellow-spotted salamander (Ambystoma maculatum) are colonized by a green alga (Oophila sp.) that significantly enhances salamander development. Previous studies have demonstrated the potential for impacts to the salamander embryo when growth of the algae is impaired by exposure to herbicides. To further investigate this relationship, the authors characterized the response of the symbiotic algae (Oophila sp.) alone to the photosystem II (PSII) inhibitor atrazine under controlled laboratory conditions. After extraction of the alga from A. maculatum eggs and optimization of culturing conditions, 4 toxicity assays (96 h each) were conducted. Recovery of the algal population was also assessed after a further 96 h in untreated media. Average median effective concentration (EC50) values of 123 µg L(-1) (PSII yield), 169 µg L(-1) (optical density), and 299 µg L(-1) (growth rate) were obtained after the 96-h exposure. Full recovery of exposed algal populations after 96 h in untreated media was observed for all endpoints, except for optical density at the greatest concentration tested (300 µg L(-1) ). Our results show that, under laboratory conditions, Oophila sp. is generally less sensitive to atrazine than standard test species. Although conditions of growth in standard toxicity tests are not identical to those in the natural environment, these results provide an understanding of the tolerance of this alga to PSII inhibitors as compared with other species.
Collapse
Affiliation(s)
- Leilan Baxter
- Centre for Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Dynamics of the growth, life history transformation and photosynthetic capacity of Oophila amblystomatis (Chlorophyceae), a green algal symbiont associated with embryos of the northeastern yellow spotted salamander Ambystoma maculatum (Amphibia). Symbiosis 2014. [DOI: 10.1007/s13199-014-0287-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|