1
|
Bray IE, Alshami IJJ, Kudoh T. The diversity and evolution of electric organs in Neotropical knifefishes. EvoDevo 2022; 13:9. [PMID: 35365204 PMCID: PMC8973549 DOI: 10.1186/s13227-022-00194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
The Gymnotiformes, also known as the South American or Neotropical knifefishes, include the strongly electric Electrophorus electricus and many other weakly electric species. These fish possess specialised electric organs that are able to release electric discharges into the water, for electrolocation and communication, and sometimes for predation and defence. All Gymnotiform species possess a myogenic electric organ (mEO) derived from the muscle tissue, and members of the Apteronotidae family uniquely possess a neurogenic electric organ (nEOs) derived from the nervous tissue. A mEO may consist of ‘Type A’ electrocytes that develop within the tail muscle (for example, in Apteronotus leptorhynchus), or ‘Type B’ electrocytes that develop below the tail muscle (for example, in Brachyhypopomus gauderio). In this review, we discuss the diversity in the anatomy, electric discharge and development of electric organs found in different Gymnotiform species, as well as the ecological and environmental factors that have likely contributed to this diversity. We then describe various hypotheses regarding the evolution of electric organs, and discuss the potential evolutionary origin of the nEO: a pair of nerve cords that are located on either side of the aorta in B. gauderio, and which may have expanded and developed into a nEO in the Apteronotidae family during its evolution from a common ancestral species. Finally, we compare potential Gymnotiform phylogenies and their supporting evidence.
Collapse
Affiliation(s)
- Isabelle E Bray
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ilham J J Alshami
- Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Waddell JC, Crampton WGR. Reproductive effort and terminal investment in a multi‐species assemblage of Amazon electric fish. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joseph C. Waddell
- Department of Biology University of Central Florida 4100 Libra Dr 32816 Orlando FL USA
- Department of Integrative and Computational Neurobiology Instituto de Investigaciones Biológicas Clemente Estable Av. Italia 3318 Montevideo 11600 Uruguay
| | | |
Collapse
|
3
|
Waddell JC, Caputi AA. The captivating effect of electric organ discharges: species, sex and orientation are embedded in every single received image. J Exp Biol 2021; 224:271071. [PMID: 34318315 DOI: 10.1242/jeb.243008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
Some fish communicate using pulsatile, stereotyped electric organ discharges (EODs) that exhibit species- and sex-specific time courses. To ensure reproductive success, they must be able to discriminate conspecifics from sympatric species in the muddy waters they inhabit. We have previously shown that fish in both Gymnotus and Brachyhypopomus genera use the electric field lines as a tracking guide to approach conspecifics (electrotaxis). Here, we show that the social species Brachyhypopomus gauderio uses electrotaxis to arrive abreast a conspecific, coming from behind. Stimulus image analysis shows that, even in a uniform field, every single EOD causes an image in which the gradient and the local field time courses contain enough information to allow the fish to evaluate the conspecific sex, and to find the path to reach it. Using a forced-choice test, we show that sexually mature individuals orient themselves along a uniform field in the direction encoded by the time course characteristic of the opposite sex. This indicates that these fish use the stimulus image profile as a spatial guidance clue to find a mate. Embedding species, sex and orientation cues is a particular example of how species can encode multiple messages in the same self-generated communication signal carrier, allowing for other signal parameters (e.g. EOD timing) to carry additional, often circumstantial, messages. This 'multiple messages' EOD embedding approach expressed in this species is likely to be a common and successful strategy that is widespread across evolutionary lineages and among varied signaling modalities.
Collapse
Affiliation(s)
- Joseph C Waddell
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| |
Collapse
|
4
|
Nourbakhsh-Rey M, Markham MR. Leptinergic Regulation of Vertebrate Communication Signals. Integr Comp Biol 2021; 61:1946-1954. [PMID: 34329470 DOI: 10.1093/icb/icab173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal communication signals are regulated by multiple hormonal axes that ensure appropriate signal targeting, timing, and information content. The regulatory roles of steroid hormones and many peptide hormones are well understood and documented across a wide range of vertebrate taxa. Two recent studies have reported a novel function for leptin, a peptide hormone central to energy balance regulation: regulating communication signals of weakly electric fish and singing mice. With only limited evidence available at this time, a key question is just how widespread leptinergic regulation of communication signals is within and across taxa. A second important question is what features of communication signals are subject to leptinergic regulation. Here we consider the functional significance of leptinergic regulation of animal communication signals in the context of both direct and indirect signal metabolic costs. Direct costs arise from metabolic investment in signal production, while indirect costs arise from the predation and social conflict consequences of the signal's information content. We propose a preliminary conceptual framework for predicting which species will exhibit leptinergic regulation of their communication signals and which signal features leptin will regulate. This framework suggests a number of directly testable predictions within and across taxa. Accounting for additional factors such as life history and the potential co-regulation of communication signals by leptin and glucocorticoids will likely require modification or elaboration of this model.
Collapse
Affiliation(s)
| | - Michael R Markham
- Department of Biology, University of Oklahoma, Norman OK 73019 USA.,Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman OK 73019 USA
| |
Collapse
|
5
|
Lovejoy DA, Hogg DW. Information Processing in Affective Disorders: Did an Ancient Peptide Regulating Intercellular Metabolism Become Co‐Opted for Noxious Stress Sensing? Bioessays 2020; 42:e2000039. [DOI: 10.1002/bies.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| | - David W. Hogg
- Department of Cell and Systems Biology University of Toronto Toronto Ontario M5S 3H4 Canada
| |
Collapse
|
6
|
Waddell JC, Caputi AA. Waveform discrimination in a pair of pulse-generating electric fishes. JOURNAL OF FISH BIOLOGY 2020; 96:1065-1071. [PMID: 32077109 DOI: 10.1111/jfb.14298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Studies of pulse-type gymnotiform electric fishes have suggested that electric organ discharge waveforms (EODw) allow individuals to discriminate between conspecific and allospecific signals, but few have approached this experimentally. Here we implement a phase-locked playback technique for a syntopic species pair, Brachyhypopomus gauderio and Gymnotus omarorum. Both species respond to changes in stimulus waveform with a transitory reduction in the interpulse interval of their self-generated discharge, providing strong evidence of discrimination. We also document sustained rate changes in response to different EODws, which may suggest recognition of natural waveforms.
Collapse
Affiliation(s)
- Joseph C Waddell
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
7
|
Leary CJ, Baugh AT. Glucocorticoids, male sexual signals, and mate choice by females: Implications for sexual selection. Gen Comp Endocrinol 2020; 288:113354. [PMID: 31830474 DOI: 10.1016/j.ygcen.2019.113354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
We review work relating glucocorticoids (GCs), male sexual signals, and mate choice by females to understand the potential for GCs to modulate the expression of sexually selected traits and how sexual selection potentially feeds back on GC regulation. Our review reveals that the relationship between GC concentrations and the quality of male sexual traits is mixed, regardless of whether studies focused on structural traits (e.g., coloration) or behavioral traits (e.g., vocalizations) or were examined in developmental or activational frameworks. In contrast, the few mate choice experiments that have been done consistently show that females prefer males with low GCs, suggesting that mate choice by females favors males that maintain low levels of GCs. We point out, however, that just as sexual selection can drive the evolution of diverse reproductive strategies, it may also promote diversity in GC regulation. We then shift the focus to females where we highlight evidence indicating that stressors or high GCs can dampen female sexual proceptivity and the strength of preferences for male courtship signals. Hence, even in cases where GCs are tightly coupled with male sexual signals, the strength of sexual selection on aspects of GC physiology can vary depending on the endocrine status of females. Studies examining how GCs relate to sexual selection may shed light on how variation in stress physiology, sexual signals, and mate choice are maintained in natural populations and may be important in understanding context-dependent relationships between GC regulation and fitness.
Collapse
Affiliation(s)
- Christopher J Leary
- Department of Biology, University of Mississippi, PO Box 1848, University, MS 38677, USA.
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| |
Collapse
|
8
|
Silva AC, Zubizarreta L, Quintana L. A Teleost Fish Model to Understand Hormonal Mechanisms of Non-breeding Territorial Behavior. Front Endocrinol (Lausanne) 2020; 11:468. [PMID: 32793118 PMCID: PMC7390828 DOI: 10.3389/fendo.2020.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aggressive behaviors occurring dissociated from the breeding season encourage the search of non-gonadal underlying regulatory mechanisms. Brain estrogen has been shown to be a key modulator of this behavior in bird and mammal species, and it remains to be understood if this is a common mechanism across vertebrates. This review focuses on the contributions of Gymnotus omarorum, the first teleost species in which estrogenic modulation of non-breeding aggression has been demonstrated. Gymnotus omarorum displays year-long aggression, which has been well characterized in the non-breeding season. In the natural habitat, territory size is independent of sex and determined by body size. During the breeding season, on the other hand, territory size no longer correlates to body size, but rather to circulating estrogens and gonadosomatic index in females, and 11-ketotestosterone in males. The hormonal mechanisms underlying non-breeding aggression have been explored in dyadic encounters in lab settings. Males and females display robust aggressive contests, whose outcome depends only on body size asymmetry. This agonistic behavior is independent of gonadal hormones and fast acting androgens. Nevertheless, it is dependent on fast acting estrogenic action, as acute aromatase blockers affect aggression engagement, intensity, and outcome. Transcriptomic profiling in the preoptic area region shows non-breeding individuals express aromatase and other steroidogenic enzyme transcripts. This teleost model reveals there is a role of brain estrogen in the control of non-breeding aggression which seems to be common among distant vertebrate species.
Collapse
Affiliation(s)
- Ana C. Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Laura Quintana
| |
Collapse
|
9
|
Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes. PLoS One 2019; 14:e0226095. [PMID: 31805125 PMCID: PMC6894849 DOI: 10.1371/journal.pone.0226095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022] Open
Abstract
The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.
Collapse
|
10
|
Candolin U, Wong BBM. Mate choice in a polluted world: consequences for individuals, populations and communities. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180055. [PMID: 31352882 DOI: 10.1098/rstb.2018.0055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pollution (e.g. by chemicals, noise, light, heat) is an insidious consequence of anthropogenic activity that affects environments worldwide. Exposure of wildlife to pollutants has the capacity to adversely affect animal communication and behaviour across a wide range of sensory modalities-by not only impacting the signalling environment, but also the way in which animals produce, perceive and interpret signals and cues. Such disturbances, particularly when it comes to sex, can drastically alter fitness. Here, we consider how pollutants disrupt communication and behaviour during mate choice, and the ecological and evolutionary changes such disturbances can engender. We explain how the different stages of mate choice can be affected by pollution, from encountering mates to the final choice, and how changes to these stages can influence individual fitness, population dynamics and community structure. We end with discussing how an understanding of these disturbances can help inform better conservation and management practices and highlight important considerations and avenues for future research. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Ulrika Candolin
- Organsimal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
11
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
12
|
Hormonal and social correlates of courtship signal quality and behaviour in male green treefrogs. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
de Jesus IS, Ferreira M, Silva-Júnior UL, Alves-Gomes JA. Effects of Neuroactive Drugs in the Discharge Patterns of Microsternarchus (Hypopomidae: Gymnotiformes) Electric Organ. Zebrafish 2017; 14:526-535. [PMID: 28968184 DOI: 10.1089/zeb.2017.1459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considering the conserved nature of synaptic physiology among vertebrates, we tested the effects of three psychotropics (diazepam, doxapram, and nicotine) on Microsternarchus cf. bilineatus, measuring 10 parameters associated to the electric organ discharges rhythm and waveform before and after the administration of each drug and a control group. There were statistically significant differences (p < 0.005) among all the experimental groups, F (70, 22619.25) = 77.7, between the two experimental phases within their respective drug treatment, F (80, 24604.51) = 16.0, and among the six experimental hours within their respective phases and groups, F (320, 37124.15) = 4.1. We observed a common general trend of reduction in the electric organ's (EO) firing rate, regardless of the expected stimulant or depressor effect of the drugs on the central nervous system (CNS). The intensity of the response changed with the treatment. The observed changes in the fishes' behavior may be a result of the drugs' direct action on the CNS or a combination of this with systemic effects of each substance tested, also in the EO.
Collapse
Affiliation(s)
- Isac Silva de Jesus
- 1 Behavioral Physiology and Evolution Laboratory, National Institute of Amazon Research , Manaus, Brazil
| | - Milena Ferreira
- 2 Animal Genetics Laboratory, National Institute of Amazon Research , Manaus, Brazil
| | | | - José Antônio Alves-Gomes
- 1 Behavioral Physiology and Evolution Laboratory, National Institute of Amazon Research , Manaus, Brazil
| |
Collapse
|
14
|
Quintana L, Zubizarreta L, Jalabert C, Batista G, Perrone R, Silva A. Building the case for a novel teleost model of non-breeding aggression and its neuroendocrine control. ACTA ACUST UNITED AC 2016; 110:224-232. [PMID: 27915075 DOI: 10.1016/j.jphysparis.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/16/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
In vertebrates, aggression has been traditionally associated with high levels of circulating androgens in breeding males. Nevertheless, the centrality of androgens as primary modulators of aggression is being reconsidered in at least in two particular cases: (1) territorial aggression outside the breeding season, and (2) aggression by females. We are developing the weakly electric fish, Gymnotus omarorum, as a novel, advantageous model system to address these two alternative forms of aggression. This species displays a short, escalated contest, after which a clear hierarchical status emerges. Subordination of individuals involves three sequential decisions: interruptions of their electric discharges, retreats, and chirps. These decisions are influenced by both size asymmetry between contenders and aggression levels of dominants. Both females and males are aggressive, and do not differ in fighting ability nor in the value placed on the resource. Aggression is completely independent of gonadal hormones: dominance status is unrelated to circulating androgen and estrogen levels, and gonadectomy in males does not affect aggression. Nevertheless, estrogenic pathways participate in the modulation of this non-breeding aggression. Our results parallel those put forth in other taxa, heightening the value of G. omarorum as a model to identify commonalities in neuroendrocrine strategies of vertebrate aggression control.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | - Cecilia Jalabert
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Gervasio Batista
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Rossana Perrone
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.
| |
Collapse
|
15
|
Waddell JC, Rodríguez-Cattáneo A, Caputi AA, Crampton WGR. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish. ACTA ACUST UNITED AC 2016; 110:164-181. [PMID: 27794446 DOI: 10.1016/j.jphysparis.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/11/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon.
Collapse
Affiliation(s)
- Joseph C Waddell
- Department of Biology, University of Central Florida, Orlando, FL, United States
| | - Alejo Rodríguez-Cattáneo
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Angel A Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - William G R Crampton
- Department of Biology, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
16
|
Phylogenetic Systematics, Biogeography, and Ecology of the Electric Fish Genus Brachyhypopomus (Ostariophysi: Gymnotiformes). PLoS One 2016; 11:e0161680. [PMID: 27736882 PMCID: PMC5063478 DOI: 10.1371/journal.pone.0161680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
A species-level phylogenetic reconstruction of the Neotropical bluntnose knifefish genus Brachyhypopomus (Gymnotiformes, Hypopomidae) is presented, based on 60 morphological characters, approximately 1100 base pairs of the mitochondrial cytb gene, and approximately 1000 base pairs of the nuclear rag2 gene. The phylogeny includes 28 species of Brachyhypopomus and nine outgroup species from nine other gymnotiform genera, including seven in the superfamily Rhamphichthyoidea (Hypopomidae and Rhamphichthyidae). Parsimony and Bayesian total evidence phylogenetic analyses confirm the monophyly of the genus, and identify nine robust species groups. Homoplastic osteological characters associated with diminutive body size and occurrence in small stream habitats, including loss of squamation and simplifications of the skeleton, appear to mislead a phylogenetic analysis based on morphological characters alone–resulting in the incorrect placing of Microsternarchus + Racenisia in a position deeply nested within Brachyhypopomus. Consideration of geographical distribution in light of the total evidence phylogeny indicates an origin for Brachyhypopomus in Greater Amazonia (the superbasin comprising the Amazon, Orinoco and major Guiana drainages), with subsequent dispersal and vicariance in peripheral basins, including the La Plata, the São Francisco, and trans-Andean basins of northwest South America and Central America. The ancestral habitat of Brachyhypopomus likely resembled the normoxic, low-conductivity terra firme stream system occupied by many extant species, and the genus has subsequently occupied a wide range of terra firme and floodplain habitats including low- and high-conductivity systems, and normoxic and hypoxic systems. Adaptations for impedance matching to high conductivity, and/or for air breathing in hypoxic systems have attended these habitat transitions. Several species of Brachyhypopomus are eurytopic with respect to habitat occupancy and these generally exhibit wider geographical ranges than stenotopic species.
Collapse
|
17
|
The effect of audience on intrasexual interaction in the male fiddler crab, Uca maracoani (Latreille 1802–1803, Decapoda, Ocypodidae). J ETHOL 2016. [DOI: 10.1007/s10164-016-0495-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Migliaro A, Silva A. Melatonin Regulates Daily Variations in Electric Behavior Arousal in Two Species of Weakly Electric Fish with Different Social Structures. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:232-41. [DOI: 10.1159/000445494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
Abstract
Timing is crucial for social interactions. Animal behavior is synchronized with biotic and abiotic environment variables ensuring that the activity phase of conspecifics occurs during the same period of the day. As biological rhythms are embedded in the complex integrative control of the brain, it is fundamental to explore its interaction with environmental and social factors. This approach will unravel the link between external stimuli carrying information on environmental cycles and the neural commands for behavior, including social behavior, associated with precise phases of those cycles. Arousal in the solitary Gymnotus omarorum and in the gregarious Brachyhypopomus gauderio is characterized by a nocturnal increase in the basal discharge rate of electric behavior, which is mild and transient in G. omarorum and large and persistent in B. gauderio. In this study, we show that the major integrator of social behavior, AVT (arginine vasotocin), is not involved in the nocturnal increase of electric behavior basal rate in isolated animals of either species. On the other hand, endogenous melatonin, the major modulator of the circadian system, is responsible for the nocturnal increase in electric behavior in isolated individuals of both species.
Collapse
|
19
|
Crampton WGR, Santana CDD, Waddell JC, Lovejoy NR. A taxonomic revision of the Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae), with descriptions of 15 new species. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The bluntnose knifefish genus BrachyhypopomusMago-Leccia, 1994, is diagnosed from other Rhamphichthyoidea (Rhamphichthyidae + Hypopomidae) by the presence of a disk-like ossification in the anterior portion of the palatoquadrate, and by the following external characters: short snout, 18.7-32.6% of head length (vs. 33.3-68.6% in Hypopomus, Gymnorhamphichthys, Iracema, and Rhamphichthys), absence of a paired accessory electric organ in the mental or humeral region (vs. presence in Hypopygus and Steatogenys), presence of 3-4 pectoral proximal radials (vs. 5 in Akawaio), presence of the antorbital + infraorbital, and the preopercular cephalic lateral line canal bones (vs. absence in Racenisia). Brachyhypopomus cannot be diagnosed unambiguously from Microsternarchus or from Procerusternarchus on the basis of external characters alone. Brachyhypopomus comprises 28 species. Here we describe 15 new species, and provide redescriptions of all 13 previously described species, based on meristic, morphometric, and other morphological characters. We include notes on ecology and natural history for each species, and provide regional dichotomous keys and distribution maps, based on the examination of 12,279 specimens from 2,787 museum lots. A lectotype is designated for Brachyhypopomus pinnicaudatus (Hopkins, Comfort, Bastian & Bass, 1990). Brachyhypopomus species are abundant in shallow lentic and slow-flowing freshwater habitats from southern Costa Rica and northern Venezuela to Uruguay and northern Argentina. Species diversity is highest in Greater Amazonia, where 20 species occur: B. alberti, new species, B. arrayae, new species, and B. cunia, new species, in the upper rio Madeira drainage; B. batesi, new species, in the central Amazon and rio Negro; B. beebei, B. brevirostris, B. regani, new species, B. sullivani, new species, and B. walteri, widespread through the Amazon and Orinoco basins and the Guianas; B. belindae, new species, in the central Amazon basin; B. benjamini, new species, and B. verdii, new species, in the upper Amazon basin; B. bennetti, in the upper, central, and lower Amazon, lower Tocantins, and upper Madeira basins; B. bullocki in the Orinoco, Negro and Essequibo drainages; B. diazi in the Orinoco Llanos; B. flavipomus, new species, and B. hamiltoni, new species, in the central and upper Amazon basin; B. hendersoni, new species, in the central Amazon, lower Negro and Essequibo basins; B. pinnicaudatus in the central and lower Amazon, lower, upper Madeira, lower Tocantins and Mearim basins, and coastal French Guiana; and B. provenzanoi, new species, in the upper Orinoco and upper Negro basins. Five species are known from the Paraná-Paraguay-Uruguay basin and adjacent southern Atlantic drainages: B. bombilla in the lower Paraná, upper, central, and lower Paraguay, Uruguay and Patos-Mirim drainages; B. brevirostris in the upper Paraguay basin; B. draco in the lower Paraná, lower Paraguay, Uruguay, Patos-Mirim, and Tramandaí basins; B. gauderio in the lower Paraná, upper, central, and lower Paraguay, Uruguay, Patos-Mirim and Tramandaí basins; and B. walteri in the lower Paraná and upper Paraguay basins. Two species occur in small Atlantic drainages of southern Brazil: B. janeiroensis in the São João, Paraíba and small intervening drainages; and B. jureiae in the Ribeira de Iguape and Una do Prelado. One species occurs in the middle and upper São Francisco basin: B. menezesi, new species. Three species occur in trans-Andean drainages: B. diazi in Caribbean drainages of northern Venezuela; B. occidentalis in Atlantic and Pacific drainages of southern Costa Rica and Panama to Darién, and the Maracaibo, Magdalena, Sinú and Atrato drainages; and B. palenque, new species, in Pacific drainages of Ecuador.
Collapse
|
20
|
Sinnett PM, Markham MR. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish. Horm Behav 2015; 71:31-40. [PMID: 25870018 DOI: 10.1016/j.yhbeh.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Energetic demands of social communication signals can constrain signal duration, repetition, and magnitude. The metabolic costs of communication signals are further magnified when they are coupled to active sensory systems that require constant signal generation. Under such circumstances, metabolic stress incurs additional risk because energy shortfalls could degrade sensory system performance as well as the social functions of the communication signal. The weakly electric fish Eigenmannia virescens generates electric organ discharges (EODs) that serve as both active sensory and communication signals. These EODs are maintained at steady frequencies of 200-600Hz throughout the lifespan, and thus represent a substantial metabolic investment. We investigated the effects of metabolic stress (food deprivation) on EOD amplitude (EODa) and EOD frequency (EODf) in E. virescens and found that only EODa decreases during food deprivation and recovers after restoration of feeding. Cortisol did not alter EODa under any conditions, and plasma cortisol levels were not changed by food deprivation. Both melanocortin hormones and social challenges caused transient EODa increases in both food-deprived and well-fed fish. Intramuscular injections of leptin increased EODa in food-deprived fish but not well-fed fish, identifying leptin as a novel regulator of EODa and suggesting that leptin mediates EODa responses to metabolic stress. The sensitivity of EODa to dietary energy availability likely arises because of the extreme energetic costs of EOD production in E. virescens and also could reflect reproductive strategies of iteroparous species that reduce social signaling and reproduction during periods of stress to later resume reproductive efforts when conditions improve.
Collapse
Affiliation(s)
- Philip M Sinnett
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA
| | - Michael R Markham
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA; Cellular & Behavioral Neurobiology Graduate Program, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
21
|
Zubizarreta L, Stoddard PK, Silva A. Aggression Levels Affect Social Interaction in the Non-Breeding Territorial Aggression of the Weakly Electric Fish,Gymnotus omarorum. Ethology 2014. [DOI: 10.1111/eth.12299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lucía Zubizarreta
- Unidad Bases Neurales de la Conducta; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Philip K. Stoddard
- Department of Biological Sciences; Florida International University; Miami FL USA
| | - Ana Silva
- Unidad Bases Neurales de la Conducta; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
- Laboratorio de Neurociencias; Facultad de Ciencias; Universidad de la República; Montevideo Uruguay
| |
Collapse
|
22
|
Abstract
Electric fish image their environments and communicate by generating electric organ discharges through the simultaneous action potentials (APs) of electric organ cells (electrocytes) in the periphery. Steatogenys elegans generates a biphasic electrocyte discharge by the precisely regulated timing and waveform of APs generated from two excitable membranes present in each electrocyte. Current-clamp recordings of electrocyte APs reveal that the posterior membrane fires first, followed ∼30 μs later by an AP on the anterior membrane. This delay was maintained even as the onset of the first AP was advanced >5 ms by increasing stimulus intensity and across multiple spikes during bursts of APs elicited by prolonged stimulation. Simultaneous cell-attached loose-patch recordings of Na(+) currents on each membrane revealed that activation voltage for Na(+) channels on the posterior membrane was 10 mV hyperpolarized compared with Na(+) channels on the anterior membrane, with no differences in activation or inactivation kinetics. Computational simulations of electrocyte APs demonstrated that this difference in Na(+) current activation voltage was sufficient to maintain the proper firing order and the interspike delay. A similar difference in activation threshold has been reported for the Na(+) currents of the axon initial segment compared with somatic Na(+) channels of pyramidal neurons, suggesting convergent evolution of spike initiation and timing mechanisms across different systems of excitable cells.
Collapse
|
23
|
Cecala AL. Using a classic paper by Bell as a platform for discussing the role of corollary discharge-like signals in sensory perception and movement control. ADVANCES IN PHYSIOLOGY EDUCATION 2014; 38:12-19. [PMID: 24585464 DOI: 10.1152/advan.00080.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of behavioral observations have shown that invertebrate and vertebrate species have the ability to distinguish between self-generated afferent inputs versus those that are generated externally. In the present article, I describe activities focused around the discussion of a classic American Physiological Society paper by Curtis C. Bell that lays the foundation for students to investigate the neural substrate underlying this ability. Students will leave this activity being able to 1) describe the technical aspects and limitations of an electric fish preparation commonly used to acquire single unit (extracellular) neurophysiological data, 2) provide physiological evidence showing that the activity of principal cells in the posterior lateral line lobe of the electric fish brain reflects that of a reafference comparator that could be used in dissociating self-generated versus externally generated sensory signals, and 3) knowledgeably discuss hypotheses concerning the role of corollary discharge and cerebellar-like structures in vertebrate and invertebrate species. The skills and background knowledge gained in this activity lay the platform for advanced study of scientific investigations into sensory, motor, and cognitive processes in undergraduate, graduate, or medical school curricula.
Collapse
Affiliation(s)
- Aaron L Cecala
- Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania
| |
Collapse
|
24
|
Silva AC, Perrone R, Zubizarreta L, Batista G, Stoddard PK. Neuromodulation of the agonistic behavior in two species of weakly electric fish that display different types of aggression. ACTA ACUST UNITED AC 2014; 216:2412-20. [PMID: 23761466 DOI: 10.1242/jeb.082180] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.
Collapse
Affiliation(s)
- Ana C Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Weakly electric gymnotiform and mormyrid fish generate and detect weak electric fields to image their worlds and communicate. These multi-purpose electric signals are generated by electrocytes, the specialized electric organ (EO) cells that produce the electric organ discharge (EOD). Just over 50 years ago the first experimental analyses of electrocyte physiology demonstrated that the EOD is produced and shaped by the timing and waveform of electrocyte action potentials (APs). Electrocytes of some species generate a single AP from a distinct region of excitable membrane, and this AP waveform determines EOD waveform. In other species, electrocytes possess two independent regions of excitable membrane that generate asynchronous APs with different waveforms, thereby increasing EOD complexity. Signal complexity is further enhanced in some gymnotiforms by the spatio-temporal activation of distinct EO regions with different electrocyte properties. For many mormyrids, additional EOD waveform components are produced by APs that propagate along stalks that connect postsynaptic regions to the main body of the electrocyte. I review here the history of research on electrocyte physiology in weakly electric fish, as well as recent discoveries of key phenomena not anticipated during early work in this field. Recent areas of investigation include the regulation of electrocyte activity by steroid and peptide hormones, the molecular evolution of electrocyte ion channels, and the evolutionary selection of ion channels expressed in excitable cells. These emerging research areas have generated renewed interest in electrocyte function and clear future directions for research addressing a broad range of new and important questions.
Collapse
Affiliation(s)
- Michael R Markham
- Department of Biology, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
26
|
Krahe R, Fortune ES. Electric fishes: neural systems, behaviour and evolution. ACTA ACUST UNITED AC 2014; 216:2363-4. [PMID: 23761461 DOI: 10.1242/jeb.091322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|