1
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Nemova NN, Kantserova NP, Lysenko LA. The Traits of Protein Metabolism in
the Skeletal Muscle of Teleost Fish. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Identification of two genes potentially related to myogenesis and muscle growth in Fenneropenaeus chinensis: Activin receptor II and Follistatin-like protein. Gene 2020; 770:145346. [PMID: 33333225 DOI: 10.1016/j.gene.2020.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Activin receptor (ActR) and follistatin-like (FSTL) genes, which are involved in the Myostatin (Mstn) related TGF-β/Smad signaling pathway, play important roles in regulating the muscle generation, development and growth of muscle in vertebrate. Our previous studies have confirmed that Mstn negatively regulates muscle development and growth in Fenneropenaeus chinensis as that in vertebrate. However, the roles of ActR and FSTL in muscle development and growth in invertebrate remains unclear. In the present study, type II ActR(FcActRII) and FSTL (FcFSTL) genes from F. chinensis were cloned and characterized, and their functions on muscle development and growth were investigated. The full-length cDNAs of FcActRII and FcFSTL were 2366 bp that encoded 572 amino acids and 2474 bp that encoded 717 amino acids, respectively. Sequence analysis revealed that the overall protein sequences of the two genes shared 97% and 96% identities with Penaeus vannamei and 50%-59% and 35%-36% identities with vertebrates, respectively. In the early development stages, muscles firstly appeared in nauplius stage and developed gradually until post larval, and the mRNA expressions of FcActRII increased from gastrula to zoea stage and then decreased from zoea stage to post larval stage while that of FcFSTL was lowest in gastrula stage and increased rapidly in nauplius stage and then expressed stably from nauplius stage to post-larval stage. In the adult shrimp, the two genes were widely distributed in the examined tissues. The FcActRII expression in muscle of L group was significantly lower than that of S group, but the FcFSTL expression showed an opposite result. After down-regulating the expression of FcMstn by RNAi, FcActRII expression was significantly down-regulated while that of FcFSTL was up-regulated. The present study suggested that FcActRII and FcFSTL, regulated by FcMstn, might be involved in myogenesis and muscle growth.
Collapse
|
4
|
Abstract
Sarcopenia - the accelerated age-related loss of muscle mass and function - is an under-diagnosed condition, and is central to deteriorating mobility, disability and frailty in older age. There is a lack of treatment options for older adults at risk of sarcopenia. Although sarcopenia's pathogenesis is multifactorial, its major phenotypes - muscle mass and muscle strength - are highly heritable. Several genome-wide association studies of muscle-related traits were published recently, providing dozens of candidate genes, many with unknown function. Therefore, animal models are required not only to identify causal mechanisms, but also to clarify the underlying biology and translate this knowledge into new interventions. Over the past several decades, small teleost fishes had emerged as powerful systems for modeling the genetics of human diseases. Owing to their amenability to rapid genetic intervention and the large number of conserved genetic and physiological features, small teleosts - such as zebrafish, medaka and killifish - have become indispensable for skeletal muscle genomic studies. The goal of this Review is to summarize evidence supporting the utility of small fish models for accelerating our understanding of human skeletal muscle in health and disease. We do this by providing a basic foundation of the (zebra)fish skeletal muscle morphology and physiology, and evidence of muscle-related gene homology. We also outline challenges in interpreting zebrafish mutant phenotypes and in translating them to human disease. Finally, we conclude with recommendations on future directions to leverage the large body of tools developed in small fish for the needs of genomic exploration in sarcopenia.
Collapse
Affiliation(s)
- Alon Daya
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
| |
Collapse
|
5
|
Wilson RE, Menning DM, Wedemeyer K, Talbot SL. A transcriptome resource for the Arctic Cod (Boreogadus saida). Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout ( Oncorhynchus mykiss). Front Genet 2016; 7:203. [PMID: 27920797 PMCID: PMC5118429 DOI: 10.3389/fgene.2016.00203] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Guangtu Gao
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | | | | | - Beth M. Cleveland
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - P. Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia UniversityMorgantown, WV, USA
| | - Roger L. Vallejo
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Yniv Palti
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Timothy D. Leeds
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| |
Collapse
|
7
|
Guru Vishnu PB, Bhattacharya TK, Kumar P, Chaterjee RN, Ravi Kumar GVPPS, Paswan C, Reddy DK, Rajendra Prasad A. Expression Profiling of Activin type IIB Receptor During Ontogeny in Broiler and Indigenous Chicken. Anim Biotechnol 2016; 28:26-36. [DOI: 10.1080/10495398.2016.1194287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Tarun K. Bhattacharya
- Molecular Genetics and Breeding, Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Pushpendra Kumar
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - R. N. Chaterjee
- Poultry Research, Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | | | - Chandan Paswan
- Central Sheep Wool and Research Institute (CSWRI), Animal Genetics and Breeding (AGB), Avikangar, Malura, India
- Veterinary College Hebbal, Animal Genetics and Breeding Animal Genetics and Breeding (AGB), Bangalore, Hyderbad, India
| | | | - Athe Rajendra Prasad
- Animal Genetics and Breeding, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
8
|
Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7562368. [PMID: 27019850 PMCID: PMC4785247 DOI: 10.1155/2016/7562368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies.
Collapse
|
9
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
10
|
Gabillard JC, Biga PR, Rescan PY, Seiliez I. Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013; 194:45-54. [PMID: 24018114 DOI: 10.1016/j.ygcen.2013.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 11/21/2022]
Abstract
In the last decade, myostatin (MSTN), a member of the TGFβ superfamily, has emerged as a strong inhibitor of muscle growth in mammals. In fish many studies reveal a strong conservation of mstn gene organization, sequence, and protein structures. Because of ancient genome duplication, teleostei may have retained two copies of mstn genes and even up to four copies in salmonids due to additional genome duplication event. In sharp contrast to mammals, the different fish mstn orthologs are widely expressed with a tissue-specific expression pattern. Quantification of mstn mRNA in fish under different physiological conditions, demonstrates that endogenous expression of mstn paralogs is rarely related to fish muscle growth rate. In addition, attempts to inhibit MSTN activity did not consistently enhance muscle growth as in mammals. In vitro, MSTN stimulates myotube atrophy and inhibits proliferation but not differentiation of myogenic cells as in mammals. In conclusion, given the strong mstn expression non-muscle tissues of fish, we propose a new hypothesis stating that fish MSTN functions as a general inhibitors of cell proliferation and cell growth to control tissue mass but is not specialized into a strong muscle regulator.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons, Equipe Croissance et Qualité de la Chair des Poissons, Campus de Beaulieu, 35000 Rennes, France.
| | | | | | | |
Collapse
|