1
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
2
|
Kinoshita M, Stewart FJ. Retinal organization and visual abilities for flower foraging in swallowtail butterflies. CURRENT OPINION IN INSECT SCIENCE 2020; 42:76-83. [PMID: 33010475 DOI: 10.1016/j.cois.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Papilio butterflies' ability to forage for flowers relies upon multiple visual cues such as color, brightness, and motion. Papilio learns the color of rewarding flowers and detects it at a distance. Its color vision is based on four photoreceptor classes: UV, blue, green, and red, providing sensitive wavelength discrimination. These four receptor classes also contribute to the perception of brightness and polarization. Papilio's motion vision is based on a different set of receptors: green, red, and broad band. This implies that two visual pathways exist in Papilio. The contribution of several receptor classes not only for chromatic vision but also achromatic vision likely enhances the butterfly's ability to detect flowers in complex visual environments.
Collapse
Affiliation(s)
- Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI-Hayama (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan.
| | - Finlay J Stewart
- Laboratory of Neuroethology, SOKENDAI-Hayama (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan
| |
Collapse
|
3
|
Guo M, Chen Q, Liu Y, Wang G, Han Z. Chemoreception of Mouthparts: Sensilla Morphology and Discovery of Chemosensory Genes in Proboscis and Labial Palps of Adult Helicoverpa armigera (Lepidoptera: Noctuidae). Front Physiol 2018; 9:970. [PMID: 30131703 PMCID: PMC6091246 DOI: 10.3389/fphys.2018.00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023] Open
Abstract
Siphoning mouthparts, consisting of proboscis and labial palps, are the exclusive feeding organs and important chemosensory organs in most adult Lepidoptera. In this study, the general morphology of the mouthpart organs and precision architecture of the proboscis was described in adult Helicoverpa armigera. Three major sensilla types with nine subtypes including three novel subtypes were identified. The novel sensilla styloconica subtype 2 was the only one having a multiporous structure, which may play olfactory roles. For further understanding of the chemosensory functions of mouthpart organs, we conducted transcriptome analysis on labial palps and proboscises. A total of 84 chemosensory genes belonging to six different families including 4 odorant receptors (ORs), 6 ionotropic receptors (IRs), 7 gustatory receptors (GRs), 39 odorant binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs) were identified. Furthermore, eight OBPs and six CSPs were identified as the novel genes. The expression level of candidate chemosensory genes in the proboscis and labial palps was evaluated by the differentially expressed gene (DEG) analysis, and the expression of candidate chemosensory receptor genes in different tissues was further investigated by quantitative real-time PCR (qRT-PCR). All the candidate receptors were detected by DEG analysis and qRT-PCR, but only a small part of the OR or IR genes was specifically or partially expressed in proboscis or labial palps, such as HarmOR58 and HarmIR75p.1, however, most of the GRs were abundantly expressed in proboscis or labial palps. The reported CO2 receptors such as HarmGR1, GR2, and GR3 were mainly expressed in labial palps. HarmGR5, GR6, and GR8, belonging to the "sugar receptor" clade, were mainly expressed in proboscis or antenna and were therefore suggested to perceive saccharide. The results suggest that the mouthparts are mutually cooperative but functionally concentrated system. These works contribute to the understanding of chemical signal recognition in mouthpart organs and provide the foundation for further functional studies.
Collapse
Affiliation(s)
- Mengbo Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Arikawa K, Iwanaga T, Wakakuwa M, Kinoshita M. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes. Front Neural Circuits 2017; 11:96. [PMID: 29238294 PMCID: PMC5712540 DOI: 10.3389/fncir.2017.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.
Collapse
Affiliation(s)
- Kentaro Arikawa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Tomoyuki Iwanaga
- Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan
| | - Motohiro Wakakuwa
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
5
|
Frolov RV. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes. J Neurophysiol 2016; 116:709-23. [PMID: 27250910 DOI: 10.1152/jn.00288.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|