1
|
Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
2
|
Hector TE, Sgrò CM, Hall MD. The influence of immune activation on thermal tolerance along a latitudinal cline. J Evol Biol 2020; 33:1224-1234. [PMID: 32506574 DOI: 10.1111/jeb.13663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Global change is shifting both temperature patterns and the geographic distribution of pathogens, and infection has already been shown to substantially reduce host thermal performance, potentially placing populations at greater risk that previously thought. But what about individuals that are able to successfully clear an infection? Whilst the direct damage a pathogen causes will likely lead to reductions in host's thermal tolerance, the response to infection often shares many underlying pathways with the general stress response, potentially acting as a buffer against subsequent thermal stress. Here, by exposing Drosophila melanogaster to heat-killed bacterial pathogens, we investigate how activation of a host's immune system can modify any response to both heat and cold temperature stress. In a single focal population, we find that immune activation can improve a host's knockdown times during heat shock, potentially offsetting some of the damage that would subsequently arise as an infection progresses. Conversely, immune activation had a detrimental effect on CTmax and did not influence lower thermal tolerance as measured by chill-coma recovery time. However, we also find that the influence of immune activation on heat knockdown times is not generalizable across an entire cline of locally adapted populations. Instead, immune activation led to signals of local adaptation to temperature being lost, erasing the previous advantage that populations in warmer regions had when challenged with heat stress. Our results suggest that activation of the immune system may help buffer individuals against the detrimental impact of infection on thermal tolerance; however, any response will be population specific and potentially not easily predicted across larger geographic scales, and dependent on the form of thermal stress faced by a host.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
3
|
Le Bourg É. Characterisation of the positive effects of mild stress on ageing and resistance to stress. Biogerontology 2020; 21:485-493. [PMID: 32189113 DOI: 10.1007/s10522-020-09870-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
The positive effects of mild stress on ageing, lifespan and resistance to stress have been studied mainly in Drosophila melanogaster flies and in the nematode Caenorhabditis elegans. These studies now allow to know the effects of the strength of the mild stress and of the number of exposures, the duration of the positive effects, if mild stress is effective when applied at any age, and whether combining two or three mild stresses is more efficient than a single one. This article summarises these results.
Collapse
Affiliation(s)
- Éric Le Bourg
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Response to Multiple Stressors: Enhanced Tolerance of Neoseiulus barkeri Hughes (Acari: Phytoseiidae) to Heat and Desiccation Stress through Acclimation. INSECTS 2019; 10:insects10120449. [PMID: 31847063 PMCID: PMC6956224 DOI: 10.3390/insects10120449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Abstract
Organisms are always confronted with multiple stressors simultaneously. Combinations of stressors, rather than single stressor, may be more appropriate in evaluating the stress they experience. N. barkeri is one of predatory mite species that are commercialized for controlling spider mites. However, their biological control efficiency was often reduced because of high temperature and desiccation in summer. To understand how to improve the tolerance of N. barkeri to combined heat and desiccation stress, we pre-exposed the adult female of N. barkeri to high temperature, desiccation and high temperature × desiccation stress for acclimation. After proper recovery time, mites were subjected to high temperature × desiccation stress again to detect the acclimation effects. The results are as follows: (1) No decrease in mortality rate were observed under high temperature × desiccation stress after heat acclimation. Instead, it increased significantly with acclimation temperature and time. (2) Dehydration acclimation both at 25 °C and high temperatures reduced mortality rate under high temperature × desiccation stress. Mortality rate was only significantly correlated with the amount of water loss, but not with temperature or water loss rate in acclimation, suggesting the increased tolerance is related to dehydration stress rather than heat stress. Among all acclimations, chronic dehydration at 25 °C, 50% relative humidity were the most effective treatment. This study indicated dehydration acclimation is effective to enhance tolerance of N. barkeri to combined heat and desiccation stress, which can improve the efficiency of biological control under multiple stressors.
Collapse
|
5
|
Menzel F, Zumbusch M, Feldmeyer B. How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Menzel
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg University Mainz Mainz Germany
| | - Miriam Zumbusch
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg University Mainz Mainz Germany
| | - Barbara Feldmeyer
- Molecular EcologySenckenberg Biodiversity and Climate Research Centre (BiK‐F) Frankfurt am Main Germany
| |
Collapse
|
6
|
Gotcha N, Terblanche JS, Nyamukondiwa C. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. J Evol Biol 2017; 31:98-110. [PMID: 29080375 DOI: 10.1111/jeb.13201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed 'cross-tolerance'. The nature and magnitude of cross-tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross-tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross-tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax ) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross-tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross-resistant than CTmax ). The results of this study have two major implications that are of broader importance: (i) that these traits likely co-evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross-tolerance.
Collapse
Affiliation(s)
- N Gotcha
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - J S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - C Nyamukondiwa
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
7
|
Lambhod C, Pathak A, Munjal AK, Parkash R. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation. Biol Open 2017; 6:1698-1706. [PMID: 29141954 PMCID: PMC5703618 DOI: 10.1242/bio.029728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. Summary: In the tropical Drosophila ananassae, low or high humidity-induced plastic changes in energy metabolites provide cross-protection to seasonally varying climatic stressors.
Collapse
Affiliation(s)
| | - Ankita Pathak
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Ashok K Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
8
|
Kalra B, Tamang AM, Parkash R. Cross-tolerance effects due to adult heat hardening, desiccation and starvation acclimation of tropical drosophilid-Zaprionus indianus. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:65-73. [PMID: 28454925 DOI: 10.1016/j.cbpa.2017.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/02/2023]
Abstract
Some insect taxa from polar or temperate habitats have shown cross-tolerance for multiple stressors but tropical insect taxa have received less attention. Accordingly, we considered adult flies of a tropical drosophilid-Zaprionus indianus for testing direct as well as cross-tolerance effects of rapid heat hardening (HH), desiccation acclimation (DA) and starvation acclimation (SA) after rearing under warmer and drier season specific simulated conditions. We observed significant direct acclimation effects of HH, DA and SA; and four cases of cross-tolerance effects but no cross-tolerance between desiccation and starvation. Cross-tolerance due to heat hardening on desiccation showed 20% higher effect than its reciprocal effect. There is greater reduction of water loss in heat hardened flies (due to increase in amount of cuticular lipids) as compared with desiccation acclimated flies. However, cross-tolerance effect of SA on heat knockdown was two times higher than its reciprocal. Heat hardened and desiccation acclimated adult flies showed substantial increase in the level of trehalose and proline while body lipids increased due to heat hardening or starvation acclimation. However, maximum increase in energy metabolites was stressor specific i.e. trehalose due to DA; proline due to HH and total body lipids due to SA. Rapid changes in energy metabolites due to heat hardening seem compensatory for possible depletion of trehalose and proline due to desiccation stress; and body lipids due to starvation stress. Thus, observed cross-tolerance effects in Z. indianus represent physiological changes to cope with multiple stressors related to warmer and drier subtropical habitats.
Collapse
Affiliation(s)
- Bhawna Kalra
- Department of Genetics, M. D. University, Rohtak 124001, India
| | | | - Ravi Parkash
- Department of Genetics, M. D. University, Rohtak 124001, India.
| |
Collapse
|
9
|
Hangartner S, Dworkin I, DeNieu M, Hoffmann AA. Does increased heat resistance result in higher susceptibility to predation? A test using Drosophila melanogaster selection and hardening. J Evol Biol 2017; 30:1153-1164. [PMID: 28386918 DOI: 10.1111/jeb.13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
Abstract
Heat resistance of ectotherms can be increased both by plasticity and evolution, but these effects may have trade-offs resulting from biotic interactions. Here, we test for predation costs in Drosophila melanogaster populations with altered heat resistance produced by adult hardening and directional selection for increased heat resistance. In addition, we also tested for genetic trade-offs by testing heat resistance in lines that have evolved under increased predation risk. We show that while 35/37 °C hardening increases heat resistance as expected, it does not increase predation risk from jumping spiders or mantids; in fact, there was an indication that survival may have increased under predation following a triple 37 °C compared to a single 35 °C hardening treatment. Flies that survived a 39 °C selection cycle showed lower survival under predation, suggesting a predation cost of exposure to a more severe heat stress. There was, however, no correlated response to selection because survival did not differ between control and selected lines after selection was relaxed for one or two generations. In addition, lines selected for increased predation risk did not differ in heat resistance. Our findings suggest independent evolutionary responses to predation and heat as measured in laboratory assays, and no costs of heat hardening on susceptibility to predation.
Collapse
Affiliation(s)
- S Hangartner
- School of Biological Sciences, Monash University, Clayton, Vic., Australia.,School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| | - I Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - M DeNieu
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - A A Hoffmann
- School of BioSciences, University of Melbourne, Bio21 Institute, Parkville, Vic., Australia
| |
Collapse
|
10
|
Kalra B, Parkash R. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus. ACTA ACUST UNITED AC 2016; 219:3237-3245. [PMID: 27591313 DOI: 10.1242/jeb.141002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022]
Abstract
Seasonally varying populations of ectothermic insect taxa from a given locality are expected to cope with simultaneous changes in temperature and humidity through phenotypic plasticity. Accordingly, we investigated the effect of saturation deficit on resistance to desiccation in wild-caught flies from four seasons (spring, summer, rainy and autumn) and corresponding flies reared in the laboratory under season-specific simulated temperature and humidity growth conditions. Flies raised under summer conditions showed approximately three times higher desiccation resistance and increased levels of cuticular lipids compared with flies raised in rainy season conditions. In contrast, intermediate trends were observed for water balance-related traits in flies reared under spring or autumn conditions but trait values overlapped across these two seasons. Furthermore, a threefold difference in saturation deficit (an index of evaporative water loss due to a combined thermal and humidity effect) between summer (27.5 mB) and rainy (8.5 mB) seasons was associated with twofold differences in the rate of water loss. Higher dehydration stress due to a high saturation deficit in summer is compensated by storage of higher levels of energy metabolite (trehalose) and cuticular lipids, and these traits correlated positively with desiccation resistance. In Z. indianus, the observed changes in desiccation-related traits due to plastic effects of simulated growth conditions correspond to similar changes exhibited by seasonal wild-caught flies. Our results show that developmental plastic effects under ecologically relevant thermal and humidity conditions can explain seasonal adaptations for water balance-related traits in Z. indianus and are likely to be associated with its invasive potential.
Collapse
Affiliation(s)
- Bhawna Kalra
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
11
|
Fournier-Level A, Neumann-Mondlak A, Good RT, Green LM, Schmidt JM, Robin C. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster. J Evol Biol 2016; 29:1030-44. [DOI: 10.1111/jeb.12844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- A. Fournier-Level
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - A. Neumann-Mondlak
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - R. T. Good
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - L. M. Green
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - J. M. Schmidt
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
- Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - C. Robin
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
12
|
Hormetic use of stress in gerontological interventions requires a cautious approach. Biogerontology 2015; 17:417-20. [PMID: 26712317 DOI: 10.1007/s10522-015-9630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/22/2015] [Indexed: 01/14/2023]
Abstract
Hormesis as a general principle is conceivable only for factors that are present in the natural environment. For such factors, existence of an optimal level can be assumed, which would correspond to the current environmental level or some average of historic levels. Theoretic basis of some hormetic mechanisms has been discussed within the scope of stress response pathways. Impacts of multiple stressing agents may produce combined effects larger than those expected from isolated impacts i.e. act synergistically. Adding the effect of a damaging stress to another damaging stress would possibly augment the damage; but if two mild stresses have positive hormetic effects, their combination can have additive positive effects. Potential adverse effects of excessive doses of hormetic agents should be pointed out particularly for senile age or a state close to decompensation when minor stimuli might be damaging. In conclusion, a hormetic use of stress in gerontological interventions requires a cautious approach.
Collapse
|
13
|
Serga SV, Maistrenko OM, Rozhok AI, Mousseau TA, Kozeretska IA. Colonization of a temperate-zone region by the fruit fly Drosophila simulans (Diptera: Drosophilidae). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fruit flies Drosophila simulans Sturtevant, 1919 and Drosophila melanogaster Meigen, 1830 are sibling species that occupy similar niches. However, unlike D. simulans, D. melanogaster has spread far beyond tropical and subtropical regions deep into temperate climate zones. A number of invasion events by D. simulans into temperate climate zones have been reported; however, its ability to overwinter and establish local populations in these areas is disputed. Here, we report the wide dispersal of D. simulans in mixed populations with D. melanogaster in Ukraine. Drosophila simulans flies found in Ukraine belong to the siII mtDNA haplogroup and are infected with maternally inherited intracellular symbiotic bacteria of the genus Wolbachia Hertig, 1936 of the strain wRi. These genetic markers indicate a common origin of the Ukrainian D. simulans flies from a subgroup of the species found to invade other temperate climate areas worldwide. Here, we report for the first time detection of D. simulans flies early in the breeding season in a temperate climate area with severe winter conditions. We also report a moderate negative relationship between relative abundance of D. simulans and mean temperature in the month of sampling reflecting this species’ known lower tolerance of high temperatures.
Collapse
Affiliation(s)
- Svitlana V. Serga
- Taras Shevchenko National University of Kyiv, 01601, 64 Volodymyrska str, Kyiv, Ukraine
| | | | - Andrii I. Rozhok
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Iryna A. Kozeretska
- Taras Shevchenko National University of Kyiv, 01601, 64 Volodymyrska str, Kyiv, Ukraine
| |
Collapse
|
14
|
Le Bourg É. Fasting and other mild stresses with hormetic effects in Drosophila melanogaster can additively increase resistance to cold. Biogerontology 2015; 16:517-27. [DOI: 10.1007/s10522-015-9574-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
15
|
Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria. J Therm Biol 2014; 46:1-9. [DOI: 10.1016/j.jtherbio.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|