1
|
Regulation of Stanniocalcin Secretion by Calcium and PTHrP in Gilthead Seabream (Sparus aurata). BIOLOGY 2022; 11:biology11060863. [PMID: 35741384 PMCID: PMC9219694 DOI: 10.3390/biology11060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Calcium balance is of paramount importance for vertebrates. In fish, the endocrine modulators of calcium homeostasis include the stanniocalcin (STC), and some members of the parathyroid hormone (PTH) family, such as the PTH-related protein (PTHrP), acting as antagonists. STC is ubiquitously expressed in higher vertebrates. In turn, bony fish exhibit specific STC-producing glands named the corpuscles of Stannius (CS). Previous studies pointed to a calcium-sensing receptor (CaSR) involvement in the secretion of STC, but little is known of the involvement of other putative regulators. The CS provides a unique model to deepen the study of STC secretion. We developed an ex vivo assay to culture CS of fish and a competitive ELISA method to measure STC concentrations. As expected, STC released from the CS responds to CaSR stimulation by calcium, calcimimetics, and calcilytic drugs. Moreover, we uncover the presence (by PCR) of two PTHrP receptors in the CS, e.g., PTH1R and PTH3R. Thus, ex vivo incubations revealed a dose-response inhibition of STC secretion in response to PTHrP at basal Ca2+ concentrations. This inhibition is achieved through specific and reversible second messenger pathways (transmembrane adenylyl cyclases and phospholipase C), as the use of specific inhibitors highlights. Together, these results provide evidence for endocrine modulation between two antagonist hormones, STC and PTHrP.
Collapse
|
2
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
3
|
Gregório SF, Ruiz-Jarabo I, Carvalho EM, Fuentes J. Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification. PLoS One 2019; 14:e0218473. [PMID: 31226164 PMCID: PMC6588277 DOI: 10.1371/journal.pone.0218473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
Collapse
Affiliation(s)
- Sílvia F. Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Edison M. Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
4
|
Alves A, Gregório SF, Egger RC, Fuentes J. Molecular and functional regionalization of bicarbonate secretion cascade in the intestine of the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 233:53-64. [PMID: 30946979 DOI: 10.1016/j.cbpa.2019.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In marine fish the intestinal HCO3- secretion is the key mechanism to enable luminal aggregate formation and water absorption. Using the sea bass (Dicentrarchus labrax), the present study aimed at establishing the functional and molecular organization of different sections of the intestine concerning bicarbonate secretion and Cl- movements. The proximal intestinal regions presented similar HCO3- secretion rates, while differences were detected in the molecular expression of the transporters involved and on regional HCO3- concentrations. The anterior region presented significantly higher Na+/K+-ATPase activity, Cl- transepithelial transport and basolateral slc4a4, apical slc26a6 and slc26a3 expression levels. In the mid intestine, the total HCO3- content was significantly increased in the fluid as in the carbonate aggregates. In the rectum no HCO3- secretion was observed and was characterized by the diminished HCO3- total content, residual molecular expression of slc4a4, slc26a6 and slc26a3, higher H+-ATPase activity and expression, suggesting the existence of a different bicarbonate handling mechanism. The possible regulation of HCO3- secretion by extracellular HCO3- and increased intracellular cAMP levels were also investigated. cAMP did not affect HCO3- secretion, although Cl- secretion was enhanced by cftr. HCO3- secretion rise due to the HCO3- basolateral increment showed that at resting levels slc4a4 was not a limiting step for secretion. The transcellular/intracellular dependence of apical HCO3- secretion differed between the proximal regions. In conclusion, intestinal HCO3- secretion has a functional region-dependent organization that was not reflected by the anterior-posterior regionalization on HCO3- secretion and expression profiles of chloride/water absorption related genes.
Collapse
Affiliation(s)
- Alexandra Alves
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Renata C Egger
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
5
|
STC1 and PTHrP Modify Carbohydrate and Lipid Metabolism in Liver of a Teleost Fish. Sci Rep 2019; 9:723. [PMID: 30679516 PMCID: PMC6346029 DOI: 10.1038/s41598-018-36821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023] Open
Abstract
Stanniocalcin 1 (STC1) and parathyroid hormone-related protein (PTHrP) are calciotropic hormones in vertebrates. Here, a recently hypothesized metabolic role for these hormones is tested on European sea bass treated with: (i) teleost PTHrP(1-34), (ii) PTHrP(1-34) and anti-STC1 serum (pro-PTHrP groups), (iii) a PTHrP antagonist PTHrP(7-34) or (iv) PTHrP(7-34) and STC1 (pro-STC1 groups). Livers were analysed using untargeted metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectroscopy. Concentrations of branched-chain amino acid (BCAA), alanine, glutamine and glutamate increased in pro-STC1 groups suggesting their mobilization from the muscle to the liver for degradation and gluconeogenesis from alanine and glutamine. In addition, only STC1 treatment decreased the concentrations of succinate, fumarate and acetate, indicating slowing of the citric acid cycle. In the pro-PTHrP groups the concentrations of glucose, erythritol and lactate decreased, indicative of gluconeogenesis from lactate. Taurine, trimethylamine, trimethylamine N-oxide and carnitine changed in opposite directions in the pro-STC1 versus the pro-PTHrP groups, suggesting opposite effects, with STC1 stimulating lipogenesis and PTHrP activating lipolysis/β-oxidation of fatty acids. These findings suggest a role for STC1 and PTHrP related to strategic energy mechanisms that involve the production of glucose and safeguard of liver glycogen reserves for stressful situations.
Collapse
|
6
|
Gregório SF, Fuentes J. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor. Int J Mol Sci 2018; 19:E1072. [PMID: 29617283 PMCID: PMC5979614 DOI: 10.3390/ijms19041072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 12/29/2022] Open
Abstract
In marine fish, high epithelial intestinal HCO₃− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃− secretion in the intestine of the sea bream (Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃− secretion in vitro using the anterior intestine. HCO₃− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.
Collapse
Affiliation(s)
- Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Suarez-Bregua P, Cal L, Cañestro C, Rotllant J. PTH Reloaded: A New Evolutionary Perspective. Front Physiol 2017; 8:776. [PMID: 29062283 PMCID: PMC5640766 DOI: 10.3389/fphys.2017.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/23/2022] Open
Abstract
The parathyroid hormone (PTH) family is a group of structurally-related secreted peptides involved in bone mineral homeostasis and multitude of developmental processes in vertebrates. These peptides mediate actions through PTH receptors (PTHRs), which belong to the transmembrane G protein-coupled receptor group. To date, genes encoding for PTH and PTHR have only been identified in chordates, suggesting that this signaling pathway may be an evolutionary innovation of our phylum. In vertebrates, we found up to six PTH and three PTHR different paralogs, varying in number between mammals and teleost fishes due to the different rounds of whole-genome duplication and specific gene losses suffered between the two groups of animals. The diversification of the PTH gene family has been accompanied by both functional divergence and convergence, making sometimes difficult the comparison between PTH peptides of teleosts and mammals. Here, we review the roles of all Pth peptides in fishes, and based on the evolutionary history of PTH paralogs, we propose a new and simple nomenclature from PTH1 to PTH4. Moreover, the recent characterization of the Pth4 in zebrafish allows us to consider the prominent role of the brain-to-bone signaling pathway in the regulation of bone development and homeostasis. Finally, comparison between PTH peptides of fish and mammals allows us to discuss an evolutionary model for PTH functions related to bone mineral balance during the vertebrate transition from an aquatic to a terrestrial environment.
Collapse
Affiliation(s)
| | - Laura Cal
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, IRBio, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
8
|
Lu W, Jin Y, Xu J, Greenwood MP, Balment RJ. Molecular characterisation and expression of parathyroid hormone-related protein in the caudal neurosecretory system of the euryhaline flounder, Platichthys flesus. Gen Comp Endocrinol 2017; 249:24-31. [PMID: 28242308 DOI: 10.1016/j.ygcen.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) is a hypercalcemic factor in fish, but the source of circulating PTHrP remains unclear. In this study investigation of the caudal neurosecretory system (CNSS), considered one of major sources of PTHrP in fish, provided valuable insights into this regulatory system. We report pthrpa and pthrpb gene cloning, characterization, expression, and responses to low salinity and hypocalcemia challenge in flounder. The pthrpa and pthrpb precursors, isolated from a European flounder CNSS library, consist of 166 and 192 amino acid residues, respectively, with an overall homology of approximately 59.2%. Both precursors contain a signal peptide and a mature peptide with cleavage and amidation sites. The flounder PTHrPA and PTHrPB peptides share only 41% sequence identity with human PTHrPA. Quantitative PCR analysis demonstrated that the bone and bladder, are respectively major sites of pthrpa and pthrpb expression in flounder. Urophysectomy confirmed the CNSS as a likely contributor to circulating PTHrP peptides. There were no significant differences in CNSS pthrpa and pthrpb mRNA expression or plasma PTHrP levels between seawater (SW) and freshwater (FW)-adapted fish, though plasma total calcium concentrations were higher in FW animals. The intraperitonial administration of EGTA rapidly induced hypocalcemia and concomitant elevation in plasma PTHrP accompanied by increases in both pthrpa and pthrpb expression in the CNSS. Together, these findings support an evolutionary conserved role for PTHrP in the endocrine regulation of calcium.
Collapse
Affiliation(s)
- Weiqun Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yingying Jin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinling Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Michael P Greenwood
- Faculty of Life Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| | - Richard J Balment
- Faculty of Life Sciences, University of Manchester, Oxford Road, M13 9PT, United Kingdom
| |
Collapse
|
9
|
Ruiz-Jarabo I, Gregório SF, Gaetano P, Trischitta F, Fuentes J. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2017; 207:57-64. [PMID: 28238831 DOI: 10.1016/j.cbpa.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO3- movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO3-cm-2h-1. However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - S F Gregório
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P Gaetano
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - F Trischitta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
10
|
Schauer KL, LeMoine CMR, Pelin A, Corradi N, Warren WC, Grosell M, McDonald MD. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine. Sci Rep 2016; 6:34494. [PMID: 27694946 PMCID: PMC5046086 DOI: 10.1038/srep34494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022] Open
Abstract
Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species.
Collapse
Affiliation(s)
- Kevin L Schauer
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | - Christophe M R LeMoine
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada.,Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Adrian Pelin
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Martin Grosell
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | | |
Collapse
|
11
|
Carvalho ESM, Gregório SF, Canário AVM, Power DM, Fuentes J. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.). Gen Comp Endocrinol 2015; 213:24-31. [PMID: 25562629 DOI: 10.1016/j.ygcen.2014.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 11/22/2022]
Abstract
Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key regulator of carbonate aggregate formation in the intestine of marine fish via its actions on water absorption, calcium regulation and HCO3(-) secretion.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|