1
|
Valenzo D, Ciria A, Schillaci G, Lara B. Grounding Context in Embodied Cognitive Robotics. Front Neurorobot 2022; 16:843108. [PMID: 35812785 PMCID: PMC9262126 DOI: 10.3389/fnbot.2022.843108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Biological agents are context-dependent systems that exhibit behavioral flexibility. The internal and external information agents process, their actions, and emotions are all grounded in the context within which they are situated. However, in the field of cognitive robotics, the concept of context is far from being clear with most studies making little to no reference to it. The aim of this paper is to provide an interpretation of the notion of context and its core elements based on different studies in natural agents, and how these core contextual elements have been modeled in cognitive robotics, to introduce a new hypothesis about the interactions between these contextual elements. Here, global context is categorized as agent-related, environmental, and task-related context. The interaction of their core elements, allows agents to first select self-relevant tasks depending on their current needs, or for learning and mastering their environment through exploration. Second, to perform a task and continuously monitor its performance. Third, to abandon a task in case its execution is not going as expected. Here, the monitoring of prediction error, the difference between sensorimotor predictions and incoming sensory information, is at the core of behavioral flexibility during situated action cycles. Additionally, monitoring prediction error dynamics and its comparison with the expected reduction rate should indicate the agent its overall performance on executing the task. Sensitivity to performance evokes emotions that function as the driving element for autonomous behavior which, at the same time, depends on the processing of the interacting core elements. Taking all these into account, an interactionist model of contexts and their core elements is proposed. The model is embodied, affective, and situated, by means of the processing of the agent-related and environmental core contextual elements. Additionally, it is grounded in the processing of the task-related context and the associated situated action cycles during task execution. Finally, the model proposed here aims to guide how artificial agents should process the core contextual elements of the agent-related and environmental context to give rise to the task-related context, allowing agents to autonomously select a task, its planning, execution, and monitoring for behavioral flexibility.
Collapse
Affiliation(s)
- Diana Valenzo
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alejandra Ciria
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Bruno Lara
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
2
|
Kuo DH, De-Miguel FF, Heath-Heckman EAC, Szczupak L, Todd K, Weisblat DA, Winchell CJ. A tale of two leeches: Toward the understanding of the evolution and development of behavioral neural circuits. Evol Dev 2020; 22:471-493. [PMID: 33226195 DOI: 10.1111/ede.12358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, México
| | | | - Lidia Szczupak
- Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, and IFIBYNE UBA-CONICET, Buenos Aires, Argentina
| | - Krista Todd
- Department of Neuroscience, Westminster College, Salt Lake City, Utah, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Christopher J Winchell
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Fendt M, Parsons MH, Apfelbach R, Carthey AJ, Dickman CR, Endres T, Frank AS, Heinz DE, Jones ME, Kiyokawa Y, Kreutzmann JC, Roelofs K, Schneider M, Sulger J, Wotjak CT, Blumstein DT. Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neurosci Biobehav Rev 2020; 115:25-33. [DOI: 10.1016/j.neubiorev.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
4
|
Kim RC, Le D, Ma K, Heath-Heckman EAC, Whitehorn N, Kristan WB, Weisblat DA. Behavioral analysis of substrate texture preference in a leech, Helobdella austinensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:191-202. [PMID: 30721348 DOI: 10.1007/s00359-019-01317-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/02/2023]
Abstract
Leeches in the wild are often found on smooth surfaces, such as vegetation, smooth rocks or human artifacts such as bottles and cans, thus exhibiting what appears to be a "substrate texture preference". Here, we have reproduced this behavior under controlled circumstances, by allowing leeches to step about freely on a range of silicon carbide substrates (sandpaper). To begin to understand the neural mechanisms underlying this texture preference behavior, we have determined relevant parameters of leech behavior both on uniform substrates of varying textures, and in a behavior choice paradigm in which the leech is confronted with a choice between rougher and smoother substrate textures at each step. We tested two non-exclusive mechanisms which could produce substrate texture preference: (1) a Differential Diffusion mechanism, in which a leech is more likely to stop moving on a smooth surface than on a rough one, and (2) a Smoothness Selection mechanism, in which a leech is more likely to attach its front sucker (prerequisite for taking a step) to a smooth surface than to a rough one. We propose that both mechanisms contribute to the texture preference exhibited by leeches.
Collapse
Affiliation(s)
- Rachel C Kim
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA
| | - Dylan Le
- Division of Biological Sciences, University of California San Diego, 3119 Pacific Hall, La Jolla, CA, 92093, USA
| | - Kenny Ma
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA
| | - Elizabeth A C Heath-Heckman
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Nathan Whitehorn
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - William B Kristan
- Division of Biological Sciences, University of California San Diego, 3119 Pacific Hall, La Jolla, CA, 92093, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, 385 LSA, Berkeley, CA, 94720-3200, USA.
| |
Collapse
|
5
|
Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, Nose A. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila. Neuron 2017; 96:1373-1387.e6. [PMID: 29198754 DOI: 10.1016/j.neuron.2017.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.
Collapse
Affiliation(s)
- Suguru Takagi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Dohjin Miyamoto
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Hokto Kazama
- RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Richard Doty Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James William Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan.
| |
Collapse
|
6
|
Kretzberg J, Pirschel F, Fathiazar E, Hilgen G. Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech. Front Physiol 2016; 7:506. [PMID: 27840612 PMCID: PMC5083904 DOI: 10.3389/fphys.2016.00506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging, and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells), approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure, and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical, and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity. This hypothesis is supported by our finding that previously identified local bend interneurons receive input from both P and T cells. Some of these interneurons seem to integrate mechanoreceptor inputs, while others appear to use temporal response cues, presumably acting as coincidence detectors. Further voltage sensitive dye studies can test these hypotheses how a tiny nervous system performs highly precise stimulus processing.
Collapse
Affiliation(s)
- Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Cluster of Excellence Hearing4all, University of OldenburgOldenburg, Germany
| | - Friederice Pirschel
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Department of Organismal Biology and Anatomy, University of ChicagoChicago, IL, USA
| | - Elham Fathiazar
- Computational Neuroscience, Department of Neuroscience, University of Oldenburg Oldenburg, Germany
| | - Gerrit Hilgen
- Computational Neuroscience, Department of Neuroscience, University of OldenburgOldenburg, Germany; Faculty of Medical Sciences, Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
7
|
Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 2016; 17:692-704. [DOI: 10.1038/nrn.2016.125] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Frady EP, Kapoor A, Horvitz E, Kristan WB. Scalable Semisupervised Functional Neurocartography Reveals Canonical Neurons in Behavioral Networks. Neural Comput 2016; 28:1453-97. [PMID: 27348420 DOI: 10.1162/neco_a_00852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Large-scale data collection efforts to map the brain are underway at multiple spatial and temporal scales, but all face fundamental problems posed by high-dimensional data and intersubject variability. Even seemingly simple problems, such as identifying a neuron/brain region across animals/subjects, become exponentially more difficult in high dimensions, such as recognizing dozens of neurons/brain regions simultaneously. We present a framework and tools for functional neurocartography-the large-scale mapping of neural activity during behavioral states. Using a voltage-sensitive dye (VSD), we imaged the multifunctional responses of hundreds of leech neurons during several behaviors to identify and functionally map homologous neurons. We extracted simple features from each of these behaviors and combined them with anatomical features to create a rich medium-dimensional feature space. This enabled us to use machine learning techniques and visualizations to characterize and account for intersubject variability, piece together a canonical atlas of neural activity, and identify two behavioral networks. We identified 39 neurons (18 pairs, 3 unpaired) as part of a canonical swim network and 17 neurons (8 pairs, 1 unpaired) involved in a partially overlapping preparatory network. All neurons in the preparatory network rapidly depolarized at the onsets of each behavior, suggesting that it is part of a dedicated rapid-response network. This network is likely mediated by the S cell, and we referenced VSD recordings to an activity atlas to identify multiple cells of interest simultaneously in real time for further experiments. We targeted and electrophysiologically verified several neurons in the swim network and further showed that the S cell is presynaptic to multiple neurons in the preparatory network. This study illustrates the basic framework to map neural activity in high dimensions with large-scale recordings and how to extract the rich information necessary to perform analyses in light of intersubject variability.
Collapse
Affiliation(s)
- E Paxon Frady
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, U.S.A.
| | | | | | - William B Kristan
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, U.S.A.
| |
Collapse
|
9
|
Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 2015; 4. [PMID: 26714106 PMCID: PMC4749567 DOI: 10.7554/elife.11346] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner.
Collapse
Affiliation(s)
- Eric D Hoopfer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yonil Jung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Hidehiko K Inagaki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|