1
|
Dos Santos Júnior JP, Dos Santos Júnior OH, Silva-Araujo ER, Cavalcanti Bezerra Gouveia HJ, Lacerda DC, Visco DB, Pontes Silva PB, Cadena-Burbano EV, Amaral de Souza Gonzaga Paz IA, de Souza SL, de Castro RM. Phenotypic plasticity: historical context, theories and DOHaD. Brain Res 2025; 1860:149673. [PMID: 40345363 DOI: 10.1016/j.brainres.2025.149673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept has emerged as an interdisciplinary framework that explores how early-life events shape long-term health and disease risk. Rooted in the Thrifty Phenotype hypothesis proposed by Barker and Hales, DOHaD builds upon centuries of philosophical and scientific thought. Central to DOHaD is the concept of phenotypic plasticity, which explains how organisms adapt their biological characteristics in response to environmental stimuli, particularly during critical developmental periods. In this context, this review aims to analyze the historical evolution of phenotypic plasticity, its theoretical foundations, and its role in health and disease. After reviewing the literature on scope, we summarize key contributions from evolutionary biology, genetics, and epigenetics, examining theories from Lamarck, Darwin, Mendel, and Waddington to contemporary perspectives in DOHaD. Understanding that early-life events can lead to adaptations which may have short-term benefits but potentially increase the likelihood of diseases in adulthood highlights the importance of targeted preventive interventions. Additionally, individual variations in response to environmental stimuli reinforce the complexity of adaptive mechanisms. Thus, understanding the intricate relationship between phenotypic plasticity, early-life exposures, and disease risk is essential for developing preventive interventions and public health strategies. The challenge remains in translating these findings into effective healthcare policies and clinical applications, ensuring improved quality of life and disease prevention across generations.
Collapse
Affiliation(s)
- Joaci Pereira Dos Santos Júnior
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Osmar Henrique Dos Santos Júnior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco 55608-680, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| | - Eulália Rebeca Silva-Araujo
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program of Health Sciences, Laboratory of Neurofunctional, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Paula Brielle Pontes Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Erika Vanessa Cadena-Burbano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Isla Ariadny Amaral de Souza Gonzaga Paz
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Sandra Lopes de Souza
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Raul Manhães de Castro
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-420, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
2
|
Fields C, Levin M. Thoughts and thinkers: On the complementarity between objects and processes. Phys Life Rev 2025; 52:256-273. [PMID: 39874620 DOI: 10.1016/j.plrev.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts. We formulate our approach in terms of the Free Energy Principle (FEP) of Friston and colleagues and the fundamental idea from quantum theory that physical interactions can be represented by linear operators. Following Levin (2024) [30], we emphasize that memory is, first and foremost, an interpretative function, from which the idea of memory as a record, at some level of accuracy, of past events is derivative. We conclude that the distinction between objects and processes is always contrived, and always misleading, and that science would be better served by abandoning it entirely.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Light L, Virdee SK, Dickens C, Diogo R. Obstructed Labor, Evolution, and Health Disparities. BIOLOGY 2024; 13:1001. [PMID: 39765668 PMCID: PMC11673148 DOI: 10.3390/biology13121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The female pelvis is often evolutionarily described as a compromise to accommodate the birthing process and bipedalism. This compromise puts a mother and baby at risk of fetopelvic disproportion, the mismatch between the size of the fetus and that of the mother's pelvis, impacting the ease with which the vaginal birthing process occurs. Obstructed labor, commonly caused by fetopelvic disproportion, is a leading cause of maternal mortality and morbidity and has serious medical sequelae for the fetus. In this review, this evolutionary aspect of fetopelvic disproportion is reconsidered within a broader sociocultural and environmental approach related to a change of paradigm from a more reductionist Neo-Darwinist to a more encompassing Extended Evolutionary Synthesis view. The review explores a more comprehensive understanding of several factors related to fetopelvic disproportion, including socioeconomic factors and ethnic disparities among individuals that might lead to a higher likelihood of obstructed labor and maternal and fetal morbidity and mortality.
Collapse
Affiliation(s)
- Liliana Light
- College of Medicine, Howard University, Washington, DC 20001, USA; (L.L.); (S.K.V.); (C.D.)
| | - Suman Kaur Virdee
- College of Medicine, Howard University, Washington, DC 20001, USA; (L.L.); (S.K.V.); (C.D.)
| | - Colin Dickens
- College of Medicine, Howard University, Washington, DC 20001, USA; (L.L.); (S.K.V.); (C.D.)
| | - Rui Diogo
- Department of Anatomy, Howard University, Washington, DC 20059, USA
| |
Collapse
|
4
|
Ariza-Mateos A, Briones C, Perales C, Sobrino F, Domingo E, Gómez J. Natural languages and RNA virus evolution. J Physiol 2024; 602:2565-2580. [PMID: 37983617 DOI: 10.1113/jp284415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Information concepts from physics, mathematics and computer science support many areas of research in biology. Their focus is on objective information, which provides correlations and patterns related to objects, processes, marks and signals. In these approaches only the quantitative aspects of the meaning of the information is relevant. In other areas of biology, 'meaningful information', which is subjective in nature, relies on the physiology of the organism's sensory organs and on the interpretation of the perceived signals, which is then translated into action, even if this is only mental (in brained animals). Information is involved, in terms of both amount and quality. Here we contextualize and review the main theories that deal with 'meaningful-information' at a molecular level from different areas of natural language research, namely biosemiotics, code-biology, biocommunication and biohermeneutics. As this information mediates between the organism and its environment, we emphasize how such theories compare with the neo-Darwinian treatment of genetic information, and how they project onto the rapid evolution of RNA viruses.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
| |
Collapse
|
5
|
Bacigalupi JA, Favareau D. The physiology of coordination: self-resolving diverse affinities via the sparse order in relevant noise. J Physiol 2024; 602:2581-2600. [PMID: 38149665 DOI: 10.1113/jp284418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023] Open
Abstract
Living systems at any given moment enact a very constrained set of end-directed and contextually appropriate actions that are self-initiated from among innumerable possible alternatives. However, these constrained actions are not necessarily because the system has reduced its sensitivities to themselves and their surroundings. Quite the contrary, living systems are continually open to novel and unanticipated stimulations that require a physiology of coordination. To address these competing demands, this paper offers a novel heuristic model informed by neuroscience, systems theory, biology and sign study to explain how organisms situated in diverse, complex and ever-changing environments might draw upon the sparse order made available by 'relevant noise'. This emergent order facilitates coordination, habituation and, ultimately, understanding of the world and its relevant affordances. Inspired by the burgeoning field of coordination dynamics and physiologist Denis Noble's concept of 'biological relativity', this model proposes a view of coordination on the neuronal level that is neither sequential nor stochastic, but instead implements a causal logic of phasic alignment, such that an organism's learned and inherited sets of diverse biological affinities and sympathies can be resolved into a continuous and complex range of patterns that will implement the kind of novel orientations and radical generativity required of such organisms to adaptively explore their environments and to learn from their experiences.
Collapse
Affiliation(s)
| | - Donald Favareau
- University Scholars Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Tanghe KB. Thomas S. Kuhn: key to a better understanding of the extended evolutionary synthesis. Theory Biosci 2024; 143:27-44. [PMID: 37978156 DOI: 10.1007/s12064-023-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
In recent years, some scholars have explicitly questioned the desirability or utility of applying the classical and "old-fashioned" theories of scientific change by the likes of Karl Popper and Thomas S. Kuhn to the question of the precise nature and significance of the extended evolutionary synthesis (EES). Supposedly, these twentieth-century philosophers are completely irrelevant for a better understanding of this new theoretical framework for the study of evolution. Here, it will be argued that the EES can be fruitfully interpreted in terms of, as yet, insufficiently considered or even overlooked elements from Kuhn's theory. First, in his original, historical philosophy of science, Kuhn not only distinguished between small and big scientific revolutions, he also pointed out that paradigms can be extended and reformulated. In contrast with what its name suggests, the mainstream EES can be interpreted as a Kuhnian reformulation of modern evolutionary theory. Second, it has, as yet, also been overlooked that the EES can be interpreted in terms of Kuhn's later, tentative evolutionary philosophy of science. With the EES, an old dichotomy in evolutionary biology is maybe being formalized and institutionalized.
Collapse
Affiliation(s)
- Koen B Tanghe
- UGent, Philosophy and Moral Sciences, Blandijnberg 2, Ghent, Belgium.
| |
Collapse
|
7
|
Moore DS. On the evolution of epigenetics via exaptation: A developmental systems perspective. Ann N Y Acad Sci 2023; 1529:21-32. [PMID: 37750405 DOI: 10.1111/nyas.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Evolution and development are interrelated processes influenced by genomic, epigenetic, and environmental factors. Epigenetic processes serve critical roles in development and operate as intermediaries that connect the genome to the rest of the world. Therefore, it is of interest to consider the evolution of epigenetic processes. The developmental systems perspective offers a distinctive, coherent, integrative way to understand the relationships between evolution, epigenetics, development, and the effects of experienced contexts. By adopting this perspective, this paper draws attention to the role of exaptation in the evolution of epigenetics in the RNA world and addresses the role of epigenetics in the later evolution of developmental processes such as cellular differentiation, learning, and memory. In so doing, the paper considers the appearance and functions of epigenetics in evolutionary history-sketching a pathway by which epigenetic processes might have evolved via exaptation and then contributed to the later development and evolution of phenotypes.
Collapse
Affiliation(s)
- David S Moore
- Psychology Field Group, Pitzer College, Claremont, California, USA
- Division of Behavioral & Organizational Sciences, Claremont Graduate University, Claremont, California, USA
| |
Collapse
|
8
|
Vitas M, Dobovišek A. Is Darwinian selection a retrograde driving force of evolution? Biosystems 2023; 233:105031. [PMID: 37734699 DOI: 10.1016/j.biosystems.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Modern science has still not provided a satisfactory empirical explanation for the increasing complexity of living organisms through evolutionary history. As no agreed-upon definitions of the complexity exist, the working definition of biological complexity has been formulated. There is no theoretical reason to expect evolutionary lineages to increase in complexity over time, and there is no empirical evidence that they do so. In our discussion we have assumed the hypothesis that at the origins of life, evolution had to first involve autocatalytic systems that only subsequently acquired the capacity of genetic heredity. We discuss the role of Darwinian selection in evolution and pose the hypothesis that Darwinian selection acts predominantly as a retrograde driving force of evolution. In this context we understand the term retrograde evolution as a degeneration of living systems from higher complexity towards living systems with lower complexity. With the proposed hypothesis we have closed the gap between Darwinism and Lamarckism early in the evolutionary process. By Lamarckism, the action of a special principle called complexification force is understood here rather than inheritance of acquired characteristics.
Collapse
Affiliation(s)
- Marko Vitas
- Laze pri Borovnici 38, 1353, Borovnica, Slovenia.
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 6B, 2000, Maribor, Slovenia.
| |
Collapse
|
9
|
Caianiello S, Bertolaso M, Militello G. Thinking in 3 dimensions: philosophies of the microenvironment in organoids and organs-on-chip. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:14. [PMID: 36949354 DOI: 10.1007/s40656-023-00560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Organoids and organs-on-a-chip are currently the two major families of 3D advanced organotypic in vitro culture systems, aimed at reconstituting miniaturized models of physiological and pathological states of human organs. Both share the tenets of the so-called "three-dimensional thinking", a Systems Physiology approach focused on recapitulating the dynamic interactions between cells and their microenvironment. We first review the arguments underlying the "paradigm shift" toward three-dimensional thinking in the in vitro culture community. Then, through a historically informed account of the technical affordances and the epistemic commitments of these two approaches, we highlight how they embody two distinct experimental cultures. We finally argue that the current systematic effort for their integration requires not only innovative "synergistic" engineering solutions, but also conceptual integration between different perspectives on biological causality.
Collapse
Affiliation(s)
- Silvia Caianiello
- Institute for the History of Philosophy and Science in the Modern Age (ISPF), Consiglio Nazionale delle Ricerche, Naples, Italy.
- Stazione Zoologica "Anton Dohrn", Naples, Italy.
| | - Marta Bertolaso
- Faculty of Science and Technology for Sustainable Development and One Health, Universitá Campus Bio-Medico di Roma, Rome, Italy
| | - Guglielmo Militello
- Faculty of Science and Technology for Sustainable Development and One Health, Universitá Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
10
|
Moore DS, Lickliter R. Development as explanation: Understanding phenotypic stability and variability after the failure of genetic determinism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:72-77. [PMID: 36682588 DOI: 10.1016/j.pbiomolbio.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
In the predominately gene-centered view of 20th century biology, the relationship between genotype and phenotype was essentially a relationship between cause and effect, between a plan and a product. Abandoning the idea of genes as inherited instructions or blueprints for phenotypes raises the question of how to best account for observed phenotypic stability and variability within and across generations of a population. We argue that the processes responsible for phenotypic stability and the processes responsible for phenotypic variability are one and the same, namely, the dynamics of development. This argument proposes that stability of phenotypic form is found not because of the transmission of genotypes, genetic programs, or the transfer of internal blueprints, but because similar internal and external conditions-collectively conceptualized as resources of development-can be reliably reconstituted in each generation. Variability of phenotypic form, which is an indispensable feature of any evolving system, relies on these same resources, but because the internal and external conditions of development are not reconstituted identically in succeeding generations, these conditions-and the phenotypes to which they give rise-will always be characterized by at least some variability.
Collapse
Affiliation(s)
- David S Moore
- Pitzer College, Psychology Field Group, 1050 N. Mills Avenue, Claremont, CA, 91711, USA.
| | - Robert Lickliter
- Department of Psychology, Florida International University, 12000 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Hu L, Xu Z, Fan R, Wang G, Wang F, Qin X, Yan L, Ji X, Meng M, Sim S, Chen W, Hao C, Wang Q, Zhu H, Zhu S, Xu P, Zhao H, Lindsey K, Daniell H, Wendel JF, Jin S. The complex genome and adaptive evolution of polyploid Chinese pepper (Zanthoxylum armatum and Zanthoxylum bungeanum). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:78-96. [PMID: 36117410 PMCID: PMC9829393 DOI: 10.1111/pbi.13926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.
Collapse
Affiliation(s)
- Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Zhongping Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Xunzhi Ji
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Minghui Meng
- State Key Laboratory of Grassland and Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
| | | | - Wei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Qinghuang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubeiChina
| | - Shu Zhu
- Jinjiaohong Spice Research InstituteJinjiaohong Agricultural Technology Group CorporationNanjingChina
| | - Pan Xu
- State Key Laboratory of Grassland and Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsHaikouChina
- Sanya Research Institute of Chinese Academy of Tropical Agricultural SciencesSanyaChina
| | | | - Henry Daniell
- Department of Biochemistry, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jonathan F. Wendel
- Department Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Veit W. Health, consciousness, and the evolution of subjects. SYNTHESE 2022; 201:3. [PMID: 36570034 PMCID: PMC9763143 DOI: 10.1007/s11229-022-03998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/02/2022] [Indexed: 05/17/2023]
Abstract
The goal of this programmatic paper is to highlight a close connection between the core problem in the philosophy of medicine, i.e. the concept of health, and the core problem of the philosophy of mind, i.e. the concept of consciousness. I show when we look at these phenomena together, taking the evolutionary perspective of modern state-based behavioural and life-history theory used as the teleonomic tool to Darwinize the agent- and subject-side of organisms, we will be in a better position to make sense of them both as natural phenomena.
Collapse
Affiliation(s)
- Walter Veit
- Department of Philosophy, University of Bristol, Bristol, UK
- Department of Biology, University of Oxford, Oxford, UK
- Munich Center for Mathematical Philosophy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
13
|
Malaterre C, Jeancolas C, Nghe P. The Origin of Life: What Is the Question? ASTROBIOLOGY 2022; 22:851-862. [PMID: 35594335 PMCID: PMC9298494 DOI: 10.1089/ast.2021.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
The question of the origin of life is a tenacious question that challenges many branches of science but is also extremely multifaceted. While prebiotic chemistry and micropaleontology reformulate the question as that of explaining the appearance of life on Earth in the deep past, systems chemistry and synthetic biology typically understand the question as that of demonstrating the synthesis of novel living matter from nonliving matter independently of historical constraints. The objective of this contribution is to disentangle the different readings of the origin-of-life question found in science. We identify three main dimensions along which the question can be differently constrained depending on context: historical adequacy, natural spontaneity, and similarity to life-as-we-know-it. We argue that the epistemic status of what needs to be explained-the explanandum-varies from approximately true when the origin-of-life question is the most constrained to entirely speculative when the constraints are the most relaxed. This difference in epistemic status triggers a shift in the nature of the origin-of-life question from an explanation-seeking question in the most constrained case to a fact-establishing question in the lesser-constrained ones. We furthermore explore how answers to some interpretations of the origin-of-life questions matter for other interpretations.
Collapse
Affiliation(s)
- Christophe Malaterre
- Département de philosophie, Université du Québec à Montréal (UQAM), Montréal, Canada
- Centre interuniversitaire de recherche sur la science et la technologie (CIRST), Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Cyrille Jeancolas
- Laboratoire Biophysique et Évolution, UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, Paris, France
- Laboratoire d'Anthropologie Sociale, Collège de France, Paris, France
| | - Philippe Nghe
- Laboratoire Biophysique et Évolution, UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
14
|
Autopoiesis, Thermodynamics, and the Natural Drift of Living Beings: Another Way to the New Evolutionary Synthesis. ENTROPY 2022; 24:e24070914. [PMID: 35885137 PMCID: PMC9317857 DOI: 10.3390/e24070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The New Evolutionary Synthesis (NES) groups a series of theories that, departing from the gene-centric approach of Modern Synthesis evolutionary theory (MS), place the organism as the central agent of evolution. Two versions of NES, each one with advantages and disadvantages, can be distinguished in this regard; the restrictive NES and the comprehensive NES. Comparatively, the comprehensive NES is a more robust theoretical construction than the restrictive one because it comes grounded on a general, thermodynamically informed theory of living beings (something that the restrictive NES lacks). However, due to its strong teleological commitments, the comprehensive NES has serious problems fitting with modern science’s methodological framework; a problem that the restrictive version, with no explicit commitment to teleology, does not face. In this paper, we propose the autopoietic approach to evolution as a way of integrating these two versions of NES, combining the theoretical robustness of the comprehensive view with the methodological appropriateness of the restrictive one. The autopoietic approach, we show, offers a non-teleological, organism-centered theory of evolution, namely the natural drift theory (NDT), and a grounding on a thermodynamic theory of living beings, namely the embodied autopoietic theory (EAT). We conclude that, from the programmatic point of view, an autopoietic (NDT plus EAT) approach to evolution offers a promising way to develop the NES project.
Collapse
|
15
|
Rebooting the Electronic Health Record. J Med Syst 2022; 46:48. [PMID: 35670870 DOI: 10.1007/s10916-022-01834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Justifications for the widespread adoption and integration of an electronic health record (EHR) have long leaned on the purported benefits of the technology. However, the performance of the EHR has been underwhelming relative to the promises of immediate access to relevant patient information, clinical decision supports, computerized ordering, and transferable patient data. In this narrative review, we provide an overview of the historical problems and limitations of the EHR, detail the core principles that define agile processes that may overcome the barriers faced by the current EHR, and re-imagine what an integrated, seamless EHR that serves its users and patients might look like. Moving forward, the EHR should be redesigned using a middle-out framework and empowering dual-type champions to maintain the sustainable diffusion of future innovations.
Collapse
|
16
|
Felin T, Koenderink J. A Generative View of Rationality and Growing Awareness †. Front Psychol 2022; 13:807261. [PMID: 35465538 PMCID: PMC9021390 DOI: 10.3389/fpsyg.2022.807261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper we contrast bounded and ecological rationality with a proposed alternative, generative rationality. Ecological approaches to rationality build on the idea of humans as "intuitive statisticians" while we argue for a more generative conception of humans as "probing organisms." We first highlight how ecological rationality's focus on cues and statistics is problematic for two reasons: (a) the problem of cue salience, and (b) the problem of cue uncertainty. We highlight these problems by revisiting the statistical and cue-based logic that underlies ecological rationality, which originate from the misapplication of concepts in psychophysics (e.g., signal detection, just-noticeable-differences). We then work through the most popular experimental task in the ecological rationality literature-the city size task-to illustrate how psychophysical assumptions have informally been linked to ecological rationality. After highlighting these problems, we contrast ecological rationality with a proposed alternative, generative rationality. Generative rationality builds on biology-in contrast to ecological rationality's focus on statistics. We argue that in uncertain environments cues are rarely given or available for statistical processing. Therefore we focus on the psychogenesis of awareness rather than psychophysics of cues. For any agent or organism, environments "teem" with indefinite cues, meanings and potential objects, the salience or relevance of which is scarcely obvious based on their statistical or physical properties. We focus on organism-specificity and the organism-directed probing that shapes awareness and perception. Cues in teeming environments are noticed when they serve as cues-for-something, requiring what might be called a "cue-to-clue" transformation. In this sense, awareness toward a cue or cues is actively "grown." We thus argue that perception might more productively be seen as the presentation of cues and objects rather than their representation. This generative approach not only applies to relatively mundane organism (including human) interactions with their environments-as well as organism-object relationships and their embodied nature-but also has significant implications for understanding the emergence of novelty in economic settings. We conclude with a discussion of how our arguments link with-but modify-Herbert Simon's popular "scissors" metaphor, as it applies to bounded rationality and its implications for decision making in uncertain, teeming environments.
Collapse
Affiliation(s)
- Teppo Felin
- Jon M. Huntsman School of Business, Utah State University, Logan, UT, United States
- Saïd Business School, University of Oxford, Oxford, United Kingdom
| | - Jan Koenderink
- Department of Experimental Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Clinical Phenotypes of Cardiovascular and Heart Failure Diseases Can Be Reversed? The Holistic Principle of Systems Biology in Multifaceted Heart Diseases. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Recent advances in cardiology and biological sciences have improved quality of life in patients with complex cardiovascular diseases (CVDs) or heart failure (HF). Regardless of medical progress, complex cardiac diseases continue to have a prolonged clinical course with high morbidity and mortality. Interventional coronary techniques together with drug therapy improve quality and future prospects of life, but do not reverse the course of the atherosclerotic process that remains relentlessly progressive. The probability of CVDs and HF phenotypes to reverse can be supported by the advances made on the medical holistic principle of systems biology (SB) and on artificial intelligence (AI). Studies on clinical phenotypes reversal should be based on the research performed in large populations of patients following gathering and analyzing large amounts of relative data that embrace the concept of complexity. To decipher the complexity conundrum, a multiomics approach is needed with network analysis of the biological data. Only by understanding the complexity of chronic heart diseases and explaining the interrelationship between different interconnected biological networks can the probability for clinical phenotypes reversal be increased.
Collapse
|
18
|
|
19
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
|
21
|
Richardson K. Genes and knowledge: Response to Baverstock, K. the gene an appraisal. https://doi.org/10.1016/j.pbiomolbio.2021.04.005. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:12-17. [PMID: 34736965 DOI: 10.1016/j.pbiomolbio.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This response aims to expand on some of the issues raised by Keith Baverstock's The Gene: An Appraisal, especially on the evolution and nature of knowledge in living things. In contrast to the simple associationism envisaged in "genetic information", it emphasises the dynamic complexity and changeability of most natural environments, and, therefore, predictability based on underlying statistical structures. That seems to be the basis of the "cognitive" functions increasingly being reported about cellular, as well as more evolved, functions, and of the autonomous agency of organisms thriving creatively in complex environments.
Collapse
|
22
|
Abstract
Some human traits arise via organic evolution while others are acquired from the prevailing culture via a process of social learning. A mainstream interpretation is that evolution amounts to a change in the relative frequency of gene variants in a population and that culture coevolves at arm's length. Matters look different if one starts instead from the view that organisms are modified during evolution because of changes in gene expression as much as changes in the relative frequency of gene variants. Gene expression, i.e. generation of the product encoded by a gene, is not under genetic control, for it requires location- and time-specific triggers, which cannot be provided by genes. The genes present in an individual are present in every cell, hence at all locations in the individual's body and at all times during the individual's life. The necessary location- and time-specific triggers are provided internally by developmental events and conditions, or externally by environmental events and conditions, i.e. non-genetically. Socially-learned traits, having no special connection with genes, may nevertheless influence evolution, as for any trait. Like organic traits generally, socially-learned traits can be positively or negatively selected, for they similarly influence survival and reproduction. Like learned traits generally, they can play an important role in evolution by providing repeated selective pressure. The resulting evolutionary change typically affects an associated trait (e.g. adult ability to digest the sugar contained in milk), not the socially-learned trait itself (e.g. dairying), which continues under the influence of cultural processes of change.
Collapse
Affiliation(s)
- David A Wells
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park, NSW, 2109, Australia.
| |
Collapse
|
23
|
Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, Gilbert A, Fernandes JF, Bukhari HA, Wajdan A, Martinez MV, Santos MS, Shamohammdi M, Luo H, Westphal P, Leeson P, DiAchille P, Gurev V, Mayr M, Geris L, Pathmanathan P, Morrison T, Cornelussen R, Prinzen F, Delhaas T, Doltra A, Sitges M, Vigmond EJ, Zacur E, Grau V, Rodriguez B, Remme EW, Niederer S, Mortier P, McLeod K, Potse M, Pueyo E, Bueno-Orovio A, Lamata P. The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 2020; 41:4556-4564. [PMID: 32128588 PMCID: PMC7774470 DOI: 10.1093/eurheartj/ehaa159] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
Collapse
Affiliation(s)
| | - Francesca Margara
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Maciej Marciniak
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Cristobal Rodero
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Filip Loncaric
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yingjing Feng
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | | | - Joao F Fernandes
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Hassaan A Bukhari
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Ali Wajdan
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | - Mehrdad Shamohammdi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Hongxing Luo
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Philip Westphal
- Medtronic PLC, Bakken Research Center, Maastricht, the Netherlands
| | - Paul Leeson
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford Cardiovascular Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paolo DiAchille
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Viatcheslav Gurev
- Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Liesbet Geris
- Virtual Physiological Human Institute, Leuven, Belgium
| | - Pras Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tina Morrison
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Frits Prinzen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Ada Doltra
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, (CB16/11/00354), CERCA Programme/Generalitat de, Catalunya, Spain
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
| | - Ernesto Zacur
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Espen W Remme
- The Intervention Centre, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | | | | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux F-33600, France
- IMB, UMR 5251, University of Bordeaux, Talence F-33400, France
- Inria Bordeaux Sud-Ouest, CARMEN team, Talence F-33400, France
| | - Esther Pueyo
- Aragón Institute of Engineering Research, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Madrid, Spain
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
24
|
Chavalarias D. From inert matter to the global society life as multi-level networks of processes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190329. [PMID: 32089114 DOI: 10.1098/rstb.2019.0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A few billion years have passed since the first life forms appeared. Since then, life has continued to forge complex associations between the different emergent levels of interconnection it forms. The advances of recent decades in molecular chemistry and theoretical biology, which have embraced complex systems approaches, now make it possible to conceptualize the questions of the origins of life and its increasing complexity from three complementary notions of closure: processes closure, autocatalytic closure and constraints closure. Developed in the wake of the second-order cybernetics, this triple closure approach, that relies on graph theory and complex networks science, sketch a paradigm where it is possible to go up the physical levels of organization of matter, from physics to biology and society, without resorting to strong reductionism. The phenomenon of life is conceived as the contingent complexification of the organization of matter, until the emergence of life forms, defined as a network of auto-catalytic process networks, organized in a multi-level manner. This approach of living systems, initiated by Maturana & Varela and Kauffman, inevitably leads to a reflection on the nature of cognition; and in the face of the deep changes that affected humanity as a complex systems, on the nature of cultural evolution. Faced with the major challenges that humanity will have to address in the decades to come, this new paradigm invites us to change our conception of causality by shifting our attention from state change to process change and to abandon a widespread notion of 'local' causality in favour of complex systems thinking. It also highlights the importance of a better understanding of the influence of social networks, recommendation systems and artificial intelligence on our future collective dynamics and social cognition processes. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.
Collapse
Affiliation(s)
- David Chavalarias
- Complex Systems Institute of Paris Île-de-France, CNRS, Paris, Île-de-France, France.,Centre d'Analyse et de Mathématique Sociales, EHESS Paris, Île-de-France, France
| |
Collapse
|
25
|
Corning PA. Beyond the modern synthesis: A framework for a more inclusive biological synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:5-12. [PMID: 32068003 DOI: 10.1016/j.pbiomolbio.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Many theorists in recent years have been calling for evolutionary biology to move beyond the Modern Synthesis - the paradigm that has long provided the theoretical backbone for the discipline. Terms like "postmodern synthesis," "integrative synthesis," and "extended evolutionary synthesis" have been invoked by various critics in connection with the many recent developments that pose deep challenges - even contradictions - to the traditional model and underscore the need for an update, or a makeover. However, none of these critics, to this author's knowledge, has to date offered an explicit alternative that could provide a unifying theoretical paradigm for our vastly increased knowledge about living systems and the history of life on Earth (but see Noble 2015, 2017). This paper briefly summarizes the case against the Modern Synthesis and its many amendments over the years, and a new paradigm is proposed, called an "Inclusive Biological Synthesis," which, it is argued, can provide a more general framework for the biological sciences. The focus of this framework is the fundamental nature of life as a contingent dynamic process - an always at-risk "survival enterprise." The ongoing, inescapable challenge of earning a living in a given environmental context - biological survival and reproduction - presents an existential problem to which all biological phenomena can be related and comprehended. They and their "parts" can be analyzed in relation to ethologist Niko Tinbergen's four key questions. Some basic properties and guiding assumptions related to this alternative paradigm are also identified.
Collapse
Affiliation(s)
- Peter A Corning
- Institute for the Study of Complex Systems, 900 University Street, D-X, Seattle, WA, 98101, USA.
| |
Collapse
|
26
|
Alemi M. The Human Social Brains. SPRINGERBRIEFS IN COMPUTER SCIENCE 2020:45-62. [DOI: 10.1007/978-3-030-25962-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Jackson ISC. Developmental bias in the fossil record. Evol Dev 2019; 22:88-102. [PMID: 31475437 DOI: 10.1111/ede.12312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
The role of developmental bias and plasticity in evolution is a central research interest in evolutionary biology. Studies of these concepts and related processes are usually conducted on extant systems and have seen limited investigation in the fossil record. Here, I identify plasticity-led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological material. I summarize the process of PLE and describe it in terms of the environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equilibrium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding.
Collapse
|
28
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
29
|
Mukherjee K, Dubovskiy I, Grizanova E, Lehmann R, Vilcinskas A. Epigenetic mechanisms mediate the experimental evolution of resistance against parasitic fungi in the greater wax moth Galleria mellonella. Sci Rep 2019; 9:1626. [PMID: 30733453 PMCID: PMC6367475 DOI: 10.1038/s41598-018-36829-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Recent concepts in evolutionary biology suggest that epigenetic mechanisms can translate environmental selection pressures into heritable changes in phenotype. To determine whether experimental selection for a complex trait in insects involves epigenetic modifications, we carried out a generation-spanning experiment using larvae of the greater wax moth Galleria mellonella as a model host to investigate the role of epigenetics in the heritability of resistance against the parasitic fungus Metarhizium robertsii. We investigated differences in DNA methylation, histone acetylation and microRNA (miRNA) expression between an experimentally resistant population and an unselected, susceptible line, revealing that the survival of G. mellonella larvae infected with M. robertsii correlates with tissue-specific changes in DNA methylation and histone modification and the modulation of genes encoding the corresponding enzymes. We also identified miRNAs differentially expressed between resistant and susceptible larvae and showed that these regulatory molecules target genes encoding proteinases and proteinase inhibitors, as well as genes related to cuticle composition, innate immunity and metabolism. These results support our hypothesis that epigenetic mechanisms facilitate, at least in part, the heritable manifestation of parasite resistance in insects. The reciprocal adaptations underlying host–parasite coevolution therefore extend beyond the genetic level to encompass epigenetic modifications.
Collapse
Affiliation(s)
- Krishnendu Mukherjee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany
| | - Ivan Dubovskiy
- Novosibirsk State Agrarian University, Dobrolubova 160, 630039, Novosibirsk, Russia
| | - Ekaterina Grizanova
- Novosibirsk State Agrarian University, Dobrolubova 160, 630039, Novosibirsk, Russia
| | - Rüdiger Lehmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Winchester Str. 2, 35394, Giessen, Germany. .,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
30
|
Biological evolution as defense of 'self'. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:54-74. [PMID: 30336184 DOI: 10.1016/j.pbiomolbio.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Although the origin of self-referential consciousness is unknown, it can be argued that the instantiation of self-reference was the commencement of the living state as phenomenal experientiality. As self-referential cognition is demonstrated by all living organisms, life can be equated with the sustenance of cellular homeostasis in the continuous defense of 'self'. It is proposed that the epicenter of 'self' is perpetually embodied within the basic cellular form in which it was instantiated. Cognition-Based Evolution argues that all of biological and evolutionary development represents the perpetual autopoietic defense of self-referential basal cellular states of homeostatic preference. The means by which these states are attained and maintained is through self-referential measurement of information and its communication. The multicellular forms, either as biofilms or holobionts, represent the cellular attempt to achieve maximum states of informational distinction and energy efficiency through individual and collective means. In this frame, consciousness, self-consciousness and intelligence can be identified as forms of collective cellular phenotype directed towards the defense of fundamental cellular self-reference.
Collapse
|
31
|
Mazzocca A, Ferraro G, Misciagna G, Fais S. Moving the systemic evolutionary approach to cancer forward: Therapeutic implications. Med Hypotheses 2018; 121:80-87. [PMID: 30396500 DOI: 10.1016/j.mehy.2018.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/26/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
We have previously presented a new Systemic Evolutionary Theory of Cancer (SETOC) based on the failure of proper endosymbiosis in eukaryotic cells. Here, we propose that the progressive uncoupling of two endosymbiotic subsystems (information and energy) inside the cell, as a consequence of long-term injuries, gives rise to alterations (i) in tissue interactions and (ii) in cell organization. In the first case, we argue that the impairment of both the coherent state and the synergy between intercellular communications underpins the onset of tissue dysplasia, that usually evolves towards cancer development. In the second case, we suggest that the rupture of endosymbiosis drives a sort of cell regression towards a protist-like entity represented by the concept of "de-emergence" postulated in our systemic evolutionary approach to carcinogenesis. This conceptual association of the cancer cell with a protist-like organism could support the development of novel cancer therapeutic approaches. To this end, we propose a paradigm shift in cancer pharmacology since: i) our knowledge of cancer pathophysiology as a complex system is insufficient, despite a vast knowledge of molecular mechanisms underlying cancer; ii) current cancer pharmacology deals only with microvariables (e.g. gene or protein targets), which do not account for the integrated pathophysiology of cancer, rather than with macrovariables (e.g. pH, membrane potential, electromagnetic fields, cell communications and so on) and mesovariables (between micro and macro), such as the interaction between various cellular components including cellular organelles. This paradigm shift should allow cancer pharmacology to move forward from molecular treatments (focusing on single targets) to modular treatments that consider cancer-related processes (i.e. inflammation, coagulation, etc.) or even to a sort of ecosystemic treatment addressing the whole functioning of the "cancer ecosystem". Examples of ecosystems treatment may be natural plant derivatives that act synergistically or pulsed electromagnetic fields which can act on particular biological processes in cancer cells. In addition, we need different working theoretical models on which to base new anticancer pharmacological approaches. Finally, we examine what value our systemic evolutionary approach could add to cancer treatments, in particular in liver cancer as a paradigm for developing potential applications.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Giovanni Ferraro
- Interuniversity Department of Physics, Polytechnic of Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Giovanni Misciagna
- Scientific and Ethical Committee, University Hospital Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine (OMM), National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
32
|
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in? Theory Biosci 2018; 137:169-184. [PMID: 30132255 DOI: 10.1007/s12064-018-0269-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to 'extend' the Modern Synthesis-derived 'standard evolutionary theory' (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES-published by Laland and collaborators in 2015-in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework.
Collapse
|
33
|
The Contributions of ‘Diet’, ‘Genes’, and Physical Activity to the Etiology of Obesity: Contrary Evidence and Consilience. Prog Cardiovasc Dis 2018; 61:89-102. [DOI: 10.1016/j.pcad.2018.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
34
|
The Double-Aspect of Life. BIOLOGY 2018; 7:biology7020028. [PMID: 29735890 PMCID: PMC6023002 DOI: 10.3390/biology7020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Life is based on two aspects: matter and a non-material, electrical component. In a dynamic system of reciprocal causality, matter and the so-called bioelectricity interact with one another, forming a functional unity. The aim of this essay is to summarize evidence for bioelectricity, for the sensitivity of biosystems to external physical factors and for the interactions of internal bioelectricity with internal biochemical structures. I propose non-material information of bioelectrical states to be just as inheritable from generation to generation as is the material genetic code.
Collapse
|
35
|
Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:49-73. [PMID: 29685747 DOI: 10.1016/j.pbiomolbio.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity.
Collapse
|
36
|
Noble D. Half a Century of IUPS. Physiology (Bethesda) 2018; 33:2-5. [PMID: 29212883 DOI: 10.1152/physiol.00031.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Denis Noble
- University of Oxford, Oxford, United Kingdom Chairman of Congress (1993), Secretary-General (1993-2001), President (2009-2017)
| |
Collapse
|
37
|
The non-Darwinian evolution of behavers and behaviors. Behav Processes 2017; 161:45-53. [PMID: 29292172 DOI: 10.1016/j.beproc.2017.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 11/24/2022]
Abstract
Many readers of this journal have been schooled in both Darwinian evolution and Skinnerian psychology, which have in common the vision of powerful control of their subjects by their sequalae. Individuals of species that generate more successful offspring come to dominate their habitat; responses of those individuals that generate more reinforcers come to dominate the repertoire of the individual in that context. This is unarguable. What is questionable is how large a role these forces of selection play in the larger landscape of existing organisms and the repertoires of their individuals. Here it is argued that non-Darwinian and non-Skinnerian selection play much larger roles in both than the reader may appreciate. The argument is based on the history of, and recent advances in, microbiology. Lessons from that history re-illuminate the three putative domains of selection by consequences: The evolution of species, response repertoires, and cultures. It is argued that before, beneath, and after the cosmically brief but crucial epoch of Darwinian evolution that shaped creatures such as ourselves, non-Darwinian forces pervade all three domains.
Collapse
|
38
|
Was the Watchmaker Blind? Or Was She One-Eyed? BIOLOGY 2017; 6:biology6040047. [PMID: 29261138 PMCID: PMC5745452 DOI: 10.3390/biology6040047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
The question whether evolution is blind is usually presented as a choice between no goals at all ('the blind watchmaker') and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments either way do not address the question whether there are short-term goals within rather than external to organisms. Organisms and their interacting populations have evolved mechanisms by which they can harness blind stochasticity and so generate rapid functional responses to environmental challenges. They can achieve this by re-organising their genomes and/or their regulatory networks. Epigenetic as well as DNA changes are involved. Evolution may have no foresight, but it is at least partially directed by organisms themselves and by the populations of which they form part. Similar arguments support partial direction in the evolution of behavior.
Collapse
|
39
|
Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc Biol Sci 2017; 284:rspb.2016.2864. [PMID: 28566483 DOI: 10.1098/rspb.2016.2864] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
The role of natural selection in the evolution of adaptive phenotypes has undergone constant probing by evolutionary biologists, employing both theoretical and empirical approaches. As Darwin noted, natural selection can act together with other processes, including random changes in the frequencies of phenotypic differences that are not under strong selection, and changes in the environment, which may reflect evolutionary changes in the organisms themselves. As understanding of genetics developed after 1900, the new genetic discoveries were incorporated into evolutionary biology. The resulting general principles were summarized by Julian Huxley in his 1942 book Evolution: the modern synthesis Here, we examine how recent advances in genetics, developmental biology and molecular biology, including epigenetics, relate to today's understanding of the evolution of adaptations. We illustrate how careful genetic studies have repeatedly shown that apparently puzzling results in a wide diversity of organisms involve processes that are consistent with neo-Darwinism. They do not support important roles in adaptation for processes such as directed mutation or the inheritance of acquired characters, and therefore no radical revision of our understanding of the mechanism of adaptive evolution is needed.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nicholas H Barton
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
40
|
Abstract
In recent decades, the phenotype of an organism (i.e. its traits and behaviour) has been studied as the outcome of a developmental 'programme' coded in its genotype. This deterministic view is implicit in the Modern Synthesis approach to adaptive evolution as a sorting process among genetic variants. Studies of developmental pathways have revealed that genotypes are in fact differently expressed depending on environmental conditions. Accordingly, the genotype can be understood as a repertoire of potential developmental outcomes or norm of reaction. Reconceiving the genotype as an environmental response repertoire rather than a fixed developmental programme leads to three critical evolutionary insights. First, plastic responses to specific conditions often comprise functionally appropriate trait adjustments, resulting in an individual-level, developmental mode of adaptive variation. Second, because genotypes are differently expressed depending on the environment, the genetic diversity available to natural selection is itself environmentally contingent. Finally, environmental influences on development can extend across multiple generations via cytoplasmic and epigenetic factors transmitted to progeny individuals, altering their responses to their own, immediate environmental conditions and, in some cases, leading to inherited but non-genetic adaptations. Together, these insights suggest a more nuanced understanding of the genotype and its evolutionary role, as well as a shift in research focus to investigating the complex developmental interactions among genotypes, environments and previous environments.
Collapse
Affiliation(s)
- Sonia E. Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
41
|
Qiu GH, Yang X, Zheng X, Huang C. The eukaryotic genome is structurally and functionally more like a social insect colony than a book. Epigenomics 2017; 9:1469-1483. [PMID: 28972397 DOI: 10.2217/epi-2017-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
42
|
Abstract
Stochasticity is harnessed by organisms to generate functionality. Randomness does not, therefore, necessarily imply lack of function or 'blind chance' at higher levels. In this respect, biology must resemble physics in generating order from disorder. This fact is contrary to Schrödinger's idea of biology generating phenotypic order from molecular-level order, which inspired the central dogma of molecular biology. The order originates at higher levels, which constrain the components at lower levels. We now know that this includes the genome, which is controlled by patterns of transcription factors and various epigenetic and reorganization mechanisms. These processes can occur in response to environmental stress, so that the genome becomes 'a highly sensitive organ of the cell' (McClintock). Organisms have evolved to be able to cope with many variations at the molecular level. Organisms also make use of physical processes in evolution and development when it is possible to arrive at functional development without the necessity to store all information in DNA sequences. This view of development and evolution differs radically from that of neo-Darwinism with its emphasis on blind chance as the origin of variation. Blind chance is necessary, but the origin of functional variation is not at the molecular level. These observations derive from and reinforce the principle of biological relativity, which holds that there is no privileged level of causation. They also have important implications for medical science.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
43
|
Dimond JL, Gamblewood SK, Roberts SB. Genetic and epigenetic insight into morphospecies in a reef coral. Mol Ecol 2017; 26:5031-5042. [DOI: 10.1111/mec.14252] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- James L. Dimond
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
- Shannon Point Marine Center Western Washington University Anacortes WA USA
| | | | - Steven B. Roberts
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
44
|
Stepanenko AA, Heng HH. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:91-103. [DOI: 10.1016/j.mrrev.2017.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/15/2022]
|
45
|
Cortez MJV, Rabajante JF, Tubay JM, Babierra AL. From epigenetic landscape to phenotypic fitness landscape: Evolutionary effect of pathogens on host traits. INFECTION GENETICS AND EVOLUTION 2017; 51:245-254. [PMID: 28408285 DOI: 10.1016/j.meegid.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.
Collapse
Affiliation(s)
- Mark Jayson V Cortez
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines.
| | - Jerrold M Tubay
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Ariel L Babierra
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| |
Collapse
|
46
|
De Loof A. The evolution of "Life": A Metadarwinian integrative approach. Commun Integr Biol 2017; 10:e1301335. [PMID: 28702123 PMCID: PMC5501214 DOI: 10.1080/19420889.2017.1301335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/12/2022] Open
Abstract
It is undeniably very logical to first formulate an unambiguous definition of “Life” before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from “still alive” to “just dead,” the following definition emerged. What we call “Life” (L) is an activity. It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such “living” entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny (”physical children” and “pupils”) as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: “Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by doing so, to solve problems.”
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
48
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Calosi P, De Wit P, Thor P, Dupont S. Will life find a way? Evolution of marine species under global change. Evol Appl 2016; 9:1035-1042. [PMID: 27695513 PMCID: PMC5039318 DOI: 10.1111/eva.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Projections of marine biodiversity and implementation of effective actions for its maintenance in the face of current rapid global environmental change are constrained by our limited understanding of species’ adaptive responses, including transgenerational plasticity, epigenetics and natural selection. This special issue presents 13 novel studies, which employ experimental and modelling approaches to (i) investigate plastic and evolutionary responses of marine species to major global change drivers; (ii) ask relevant broad eco‐evolutionary questions, implementing multiple species and populations studies; (iii) show the advantages of using advanced experimental designs and tools; (iv) construct novel model organisms for marine evolution; (v) help identifying future challenges for the field; and (vi) highlight the importance of incorporating existing evolutionary theory into management solutions for the marine realm. What emerges is that at least some populations of marine species have the ability to adapt to future global change conditions. However, marine organisms’ capacity for adaptation appears finite, due to evolutionary trade‐offs and possible rapid losses in genetic diversity. This further corroborates the idea that acquiring an evolutionary perspective on how marine life will respond to the selective pressure of future global changes will guide us in better identifying which conservation efforts will be most needed and most effective.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie Chimie et Géographie Universitè du Québec à Rimouski Rimouski QC Canada
| | - Pierre De Wit
- Department of Marine Sciences University of Gothenburg Strömstad Sweden
| | - Peter Thor
- Norwegian Polar Institute Fram Centre Tromsø Norway
| | - Sam Dupont
- Department of Biological and Environmental Sciences University of Gothenburg Fiskebäckskil Sweden
| |
Collapse
|
50
|
Louis AA. Contingency, convergence and hyper-astronomical numbers in biological evolution. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 58:107-116. [PMID: 26868415 DOI: 10.1016/j.shpsc.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces.
Collapse
Affiliation(s)
- Ard A Louis
- Rudolph Peierls Centre for Theoretical Physics, Univeristy of Oxford, 1 Keble Road, Ox1 3NP, United Kingdom.
| |
Collapse
|