1
|
Kagan D, Hollings J, Batabyal A, Lukowiak K. Five-minute exposure to a novel appetitive food substance is sufficient time for a microRNA-dependent long-term memory to form. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:83-90. [PMID: 37382606 DOI: 10.1007/s00359-023-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The Garcia effect is a unique form of conditioned taste aversion which requires that a novel food stimulus be followed sometime later by a sickness state associated with the novel food stimulus. The long-lasting associative memory resulting from the Garcia effect ensures that organisms avoid toxic foods in their environment. Considering its ecological relevance, we sought to investigate whether a brief encounter (5 min) with a novel, appetitive food stimulus can cause a persisting long-term memory (LTM) to form that would in turn block the Garcia effect in Lymnaea stagnalis. Furthermore, we wanted to explore whether that persisting LTM could be modified by the alteration of microRNAs via an injection of poly-L-lysine (PLL), an inhibitor of Dicer-mediated microRNA biogenesis. The Garcia effect procedure involved two observations of feeding behavior in carrot separated by a heat stress (30 °C for 1 h). Exposing snails to carrot for 5 min caused a LTM to form and persist for 1 week, effectively preventing the Garcia effect in snails. In contrast, PLL injection following the 5-min carrot exposure impaired LTM formation, allowing the Garcia effect to occur. These results provide more insight into LTM formation and the Garcia effect, an important survival mechanism.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
2
|
Kagan D, Hollings J, Batabyal A, Lukowiak K. Better together: isolation impedes memory formation for configural learning in Lymnaea stagnalis. J Exp Biol 2023; 226:jeb246478. [PMID: 37947165 DOI: 10.1242/jeb.246478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Social interactions play an important role in learning and memory. There is great variability in the literature regarding the effects of social isolation on cognition. Here, we investigated how memory formation was affected when Lymnaea stagnalis, our model system, were socially isolated at three different time periods: before, during or after the configural learning training procedure. Each group of snails underwent configural learning where we recorded and compared their feeding behaviour before and after the pairing of an appetitive food stimulus with predator kairomones (i.e. the training procedure). We found that isolating snails before the training procedure had no effect on their learning and memory. However, when snails were isolated either during the training procedure or immediately after the training procedure, they no longer formed memory. These data provide further insight into how isolation impacts cognitive functioning in the context of higher-order learning.
Collapse
Affiliation(s)
- Diana Kagan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Jasper Hollings
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
3
|
The Popcorn Illusion. Integr Psychol Behav Sci 2023; 57:314-327. [PMID: 35852672 DOI: 10.1007/s12124-022-09682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/13/2023]
Abstract
A popcorn popping is almost magical. And yet, the science of popcorn is safe and clear about the steps until the pop: the components, processes, and results of making popcorn. Nature has its own way to produce surprise in the form of "pops" (i.e., emergence, qualitative shifts). Emergent features spread throughout the life of taxa and individuals. A pop can be sudden and chaotic. And so is creativity. There is no incompatibility between creativity and naturalistic endeavors in science. Creativity is no god given gift blown inside humans. When creativity is defined by originality and spontaneity, it describes a feature with no past or present. I briefly summarize how one can see non-random innovation, no free occurring spontaneity, and non-heuristic effectiveness as features of behaviors that are not necessarily considered creative. Those three features reveal how traditional views of creativity undermine its real determiners and how it can be objectively defined and observed.
Collapse
|
4
|
Rivi V, Benatti C, Rigillo G, Blom JMC. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. J Exp Biol 2023; 226:jeb244844. [PMID: 36719249 DOI: 10.1242/jeb.244844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Joan M C Blom
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
5
|
Rivi V, Batabyal A, Juego K, Kakadiya M, Benatti C, Blom JMC, Lukowiak K. To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:479-495. [PMID: 34052874 DOI: 10.1007/s00359-021-01491-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
Taste aversion learning is universal. In animals, a single presentation of a novel food substance followed hours later by visceral illness causes animals to avoid that taste. This is known as bait-shyness or the Garcia effect. Humans demonstrate this by avoiding a certain food following the development of nausea after ingesting that food ('Sauce Bearnaise effect'). Here, we show that the pond snail Lymnaea stagnalis is capable of the Garcia effect. A single 'pairing' of a novel taste, a carrot slurry followed hours later by a heat shock stressor (HS) is sufficient to suppress feeding response elicited by carrot for at least 24 h. Other food tastes are not suppressed. If snails had previously been exposed to carrot as their food source, the Garcia-like effect does not occur when carrot is 'paired' with the HS. The HS up-regulates two heat shock proteins (HSPs), HSP70 and HSP40. Blocking the up-regulation of the HSPs by a flavonoid, quercetin, before the heat shock, prevented the Garcia effect in the snails. Finally, we found that snails exhibit Garcia effect following a period of food deprivation but the long-term memory (LTM) phenotype can be observed only if the animals are tested in a food satiated state.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karla Juego
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mili Kakadiya
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
Swinton C, Swinton E, Phillips I, Lukowiak K. A thermal stressor, propranolol and long-term memory formation in freshly collected Lymnaea. J Exp Biol 2021; 224:jeb.242293. [PMID: 33795418 DOI: 10.1242/jeb.242293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
A heat stressor (1 h at 30°C) in Lymnaea stagnalis before operant conditioning training of aerial respiration is sufficient to enhance long-term memory (LTM) formation in 'average' cognitive ability, laboratory-reared, inbred snails. However, in freshly collected outbred snails, the same heat stressor blocks LTM formation in 'smart' cognitive phenotype but not in average cognitive phenotype strains. Here, we hypothesize that (1) preventing the stress associated with the heat stressor before training allows LTM to form in the smart phenotype strains; and (2) alleviating the stress before a memory recall session allows a formed LTM to be recalled in the smart phenotype strains. We found that an injection of propranolol, which mitigates the stressor, before snails experience the heat stressor enabled two strains of the smart phenotype snails to form LTM, consistent with our first hypothesis. However, the injection of propranolol before a memory test session did not alleviate a memory recall block in the smart phenotype snails. Thus, our second hypothesis was not supported. Therefore, smart cognitive phenotype snails encountering a heat stressor have an inability to form LTM, but this inability can be overcome by the pre-injection of propranolol.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Iain Phillips
- Water Security Agency, Saskatoon, SK S7N 3R3, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Soudavari R, Batabyal A, Lukowiak K. In the great pond snail (Lymnaea stagnalis), two stressors that individually enhance memory in combination block memory formation. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stress plays an important role in memory formation in the great pond snail (Lymnaea stagnalis (Linnaeus, 1758)). Individual stressors have been shown to enhance or to perturb long-term memory (LTM) formation. However, when snails perceive a combination of two stressors, it is unclear the outcome with regards to LTM formation. Here we first show that when L. stagnalis are exposed individually to either a predator stressor (crayfish effluent (CE), which is a kairomone) or a thermal stressor (30 °C), LTM formation is enhanced. In their natural environment, L. stagnalis may experience temperatures approaching 30 °C and they may encounter crayfish at the same time. How such a combination of stressors alters adaptive behaviour is unknown. Here we show that when these two stressors are combined, LTM formation is blocked. Since boiling CE inactivates the kairomone, we used previously boiled CE that we combined with the thermal stressor and found that LTM formation is again enhanced. These data show that (i) it cannot accurately be predicted how a combination of stressors when combined interact to alter LTM formation and (ii) there is a difference between hot CE and room temperature CE.
Collapse
Affiliation(s)
- Romina Soudavari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Itoh A, Komatsuzaki Y, Lukowiak K, Saito M. Epicatechin increases the persistence of long-term memory formed by conditioned taste aversion in Lymnaea. J Exp Biol 2021; 224:jeb238055. [PMID: 33443041 DOI: 10.1242/jeb.238055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
We examined the effects of epicatechin (Epi), a flavonoid abundant in green tea and cocoa, on long-term memory (LTM) formed following conditioned taste aversion (CTA) training in Lymnaeastagnalis In CTA training, the snails learnt to avoid a food that initially they liked (i.e. sucrose). Twenty-four hours after CTA training, 67% of the trained snails showed a significant decrease in the feeding behaviour elicited by sucrose. Placing snails in the Epi solution in CTA training did not alter the percentage of snails exhibiting LTM, but it significantly increased LTM persistence. We also examined changes following Epi exposure in spontaneous activity of the cerebral giant cells (CGCs) that modulate feeding behaviour and are necessary for CTA-LTM. Our data suggest that Epi causes a decrease in CGC activity and increases LTM persistence, possibly via a GABAergic mechanism.
Collapse
Affiliation(s)
- Ayaka Itoh
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yoshimasa Komatsuzaki
- Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Minoru Saito
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
9
|
Another Example of Conditioned Taste Aversion: Case of Snails. BIOLOGY 2020; 9:biology9120422. [PMID: 33256267 PMCID: PMC7760351 DOI: 10.3390/biology9120422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary It is important to decide what to eat and what not to eat in the life. Children are likely to reject new foods. When eating a new food results in a negative experience, the child will avoid that specific food in the future. This phenomenon is called ‘conditioned taste aversion’ in mammals, and it is considered necessary for survival by preventing subsequent ingestion of sickening foods. Many researchers study the same kind of phenomenon in invertebrates, too. For example, the formation of conditioned taste aversion was found in the pond snail, Lymnaea stagnalis, with the selective associability between a sweet sucrose solution and a bitter KCl solution. A sweet food attracts many kinds of animals, resulting in the feeding response, whereas a KCl solution is an aversive stimulus, inducing a withdrawal response in snails. After repeated temporally-contingent presentations of these two stimuli, the sucrose solution no longer elicits a feeding response, and this phenomenon persists for a long term. In the present review, we first outline the mechanisms of conditioned taste aversion in mammals, then introduce the conditioned taste aversion in snails, and compare them. Furthermore, the molecular events in snails are discussed, suggesting the general mechanism in conditioned taste aversion. Abstract Conditioned taste aversion (CTA) in mammals has several specific characteristics: (1) emergence of a negative symptom in subjects due to selective association with a taste-related stimulus, (2) robust long-term memory that is resistant to extinction induced by repeated presentation of the conditioned stimulus (CS), (3) a very-long-delay presentation of the unconditioned stimulus (US), and (4) single-trial learning. The pond snail, Lymnaea stagnalis, can also form a CTA. Although the negative symptoms, like nausea, in humans cannot be easily observed in invertebrate animal models of CTA, all the other characteristics of CTA seem to be present in snails. Selective associability was confirmed using a sweet sucrose solution and a bitter KCl solution. Once snails form a CTA, repeated presentation of the CS does not extinguish the CTA. A long interstimulus interval between the CS and US, like in trace conditioning, still results in the formation of a CTA in snails. Lastly, even single-trial learning has been demonstrated with a certain probability. In the present review, we compare, in detail, CTA in mammals and snails, and discuss the possible molecular events in CTA.
Collapse
|
10
|
Swinton E, Shymansky T, Swinton C, Lukowiak K. Stress before training alters memory retrieval of a non-declarative memory in Lymnaea. J Exp Biol 2020; 223:jeb223727. [PMID: 32601118 DOI: 10.1242/jeb.223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Stress alters both memory formation and its retrieval. Here, we show that a combination of stressors before an associative learning event alters memory retrieval of a non-declarative memory in an invertebrate model system. Previously, two combinations of stressors were purported to prevent long-term memory (LTM) formation in 'smart' Lymnaea and this inability to form LTM was considered to be a cost of being smart. Here, we show that is not the case. The specific combinations of stressors used here cause emotional memory formation. Previously, it was shown that propranolol, a synthetic beta-blocker, altered emotional memory in Lymnaea. We show here that when propranolol but not saline is injected into smart snails before they perceive the combination of stressors, these snails form LTM. We then show that the injection of propranolol but not saline before a memory activation session allowed the memory to be recalled. That is, LTM formed but was not retrievable unless propranolol was injected pre-retrieval. Thus, the smart snails formed LTM in the face of the stressors but could not retrieve it.
Collapse
Affiliation(s)
- Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
11
|
Swinton E, Swinton C, Lukowiak K. Shell damage leads to enhanced memory formation in Lymnaea. ACTA ACUST UNITED AC 2019; 222:jeb.207571. [PMID: 31431472 DOI: 10.1242/jeb.207571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Ecologically relevant stressors alter the ability of the pond snail, Lymnaea stagnalis, to form long-term memory (LTM). Here, we show that an environmentally relevant stressor, shell damage, has a dramatic effect on the enhancement of LTM formation. Damage in the form of a shell clip 24 h before operant conditioning training resulted in long-term memory (LTM) formation following a single 0.5 h training session (TS). Typically, in these snails, two 0.5 h TSs with a 1 h interval between the sessions are required to cause LTM formation. We show here that even with a 72 h interval between shell clip and training, memory enhancement still occurred. The stress associated with shell clip could be mitigated by an ongoing high-Ca2 + pond water environment, an injection of propranolol and a DNA methylation blocker. However, use of an anaesthetic (MgCl2) during the clip or intermittent exposure to the high-Ca2 + pond water environment did not mitigate the stress associated with the shell clip. Shell clip was also sufficient to cause juvenile snails, which neither learn nor form memory, to gain the capacity to form LTM. Together, the experiments demonstrate that shell clipping is an environmentally relevant stressor that can cause enhancement of LTM formation.
Collapse
Affiliation(s)
- Erin Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
12
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Zhang J, de Freitas E, Lukowiak K. Black tea differs from green tea: it suppresses long-term memory formation in Lymnaea. Commun Integr Biol 2018; 11:1-4. [PMID: 30214677 PMCID: PMC6132430 DOI: 10.1080/19420889.2018.1491245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 11/03/2022] Open
Abstract
Foods, such as Green tea (GT), containing the flavonol, (-)-Epicatechin (Epi), enhance the formation of long-term memory (LTM) when snails are operantly conditioned in that substance. That is, a single 0.5 h training session results in LTM; whereas similar training in pond water does not result in LTM. It was of interest to determine if Black tea (BT), which is a more popular beverage than GT and which is derived from the same tea leaves, also enhances LTM formation. We found that BT, unlike GT, depressed homeostatic aerial respiratory behaviour and obstructed LTM formation. We used two different methods to determine if BT altered LTM formation and both procedures showed us that BT obstructed LTM formation. We conclude that BT obstructs LTM formation and depresses homeostatic aerial respiration
Collapse
Affiliation(s)
- Jack Zhang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. ACTA ACUST UNITED AC 2018; 220:3026-3038. [PMID: 28855319 DOI: 10.1242/jeb.159038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
Abstract
Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaeastagnalis central nervous system that encode two G-protein-coupled receptors (Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1.,Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sangmin Lee
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jeremy Forest
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-0321, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
15
|
Shymansky T, Hughes E, Rothwell CM, Lukowiak K. Propranolol disrupts consolidation of emotional memory in Lymnaea. Neurobiol Learn Mem 2018; 149:1-9. [DOI: 10.1016/j.nlm.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/30/2023]
|
16
|
Aonuma H, Totani Y, Kaneda M, Nakamura R, Watanabe T, Hatakeyama D, Dyakonova VE, Lukowiak K, Ito E. Effects of 5-HT and insulin on learning and memory formation in food-deprived snails. Neurobiol Learn Mem 2018; 148:20-29. [DOI: 10.1016/j.nlm.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/08/2017] [Accepted: 12/29/2017] [Indexed: 01/20/2023]
|
17
|
Sunada H, Totani Y, Nakamura R, Sakakibara M, Lukowiak K, Ito E. Two Strains of Lymnaea stagnalis and the Progeny from Their Mating Display Differential Memory-Forming Ability on Associative Learning Tasks. Front Behav Neurosci 2017; 11:161. [PMID: 28955210 PMCID: PMC5601001 DOI: 10.3389/fnbeh.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
The pond snail Lymnaea stagnalis learns and forms long-term memory (LTM) following both operant conditioning of aerial respiratory behavior and classical conditioning of taste aversive behavior. In the present study, we examined whether there are interstrain differences in the ability to form LTM following these two types of conditioning. A strain of Lymnaea (TC1) collected in Alberta, Canada exhibits superior memory-forming ability following aerial respiratory operant conditioning compared to a laboratory-reared strain of Lymnaea from Netherlands known as the Dutch strain. We asked whether the offspring of the Canadian TC1 and Dutch snails (i.e., filial 1 (F1) cross snails) would have the superior memory ability and found, rather, that their memory ability was average like the Dutch snails. That is, the Canadian TC1 snails have superior ability for LTM formation following aerial respiratory operant conditioning, but the Dutch and the generated F1 cross have average ability for memory forming. We next examined the Canadian TC1, Dutch and F1 cross snails for their ability to learn and form memory following conditioned taste aversion (CTA). All three populations showed similar associative CTA responses. However, both LTM formation and the ratio of good-to-poor performers in the memory retention test were much better in the Dutch snails than the Canadian TC1 and F1 cross snails. The memory abilities of the Canadian TC1 and F1 cross snails were average. Our present findings, therefore, suggest that snails of different strains have different memory abilities, and the F1 cross snails do not inherit the memory ability from the smart strain. To our knowledge, there have been a limited number of studies examining differences in memory ability among invertebrate strains, with the exception of studies using mutant flies.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanuki, Japan
| | - Yuki Totani
- Department of Biology, Waseda UniversityTokyo, Japan
| | | | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda UniversityTokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanuki, Japan.,Department of Biology, Waseda UniversityTokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda UniversityTokyo, Japan.,WASEDA Bioscience Research Institute in SingaporeSingapore, Singapore.,Lipid Science and Aging Research Center and Center for Stem Cell Research, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
18
|
Affiliation(s)
- E. Ito
- Department of Biology, Waseda University , Tokyo, Japan
| | - Y. Totani
- Department of Biology, Waseda University , Tokyo, Japan
| | - A. Oike
- Department of Biology, Waseda University , Tokyo, Japan
| |
Collapse
|
19
|
Sunada H, Riaz H, de Freitas E, Lukowiak K, Swinton C, Swinton E, Protheroe A, Shymansky T, Komatsuzaki Y, Lukowiak K. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation. ACTA ACUST UNITED AC 2017; 219:1337-45. [PMID: 27208033 DOI: 10.1242/jeb.134296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/31/2016] [Indexed: 12/30/2022]
Abstract
Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Hamza Riaz
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kai Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Yoshimasa Komatsuzaki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
20
|
Young A, Protheroe A, Lukowiak K. Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:403-411. [PMID: 28283412 DOI: 10.1016/j.envpol.2017.02.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
We tested the effect of silver nanoparticles (AgNPs) on the ability of the pond snail, Lymnaea stagnalis, to learn and form long-term memory (LTM) following operant conditioning of aerial respiration. We hypothesized that the AgNPs would act as a stressor and prevent learning and LTM formation. We tested snails exposed for either 72 h or only during training and testing for memory (i.e. 0.5 h) and found no difference between those treatments. We found that at a low concentration of AgNPs (5 μg/L) neither learning and nor memory formation were altered. When we increased the concentration of AgNPs (10 μg/L) we found that memory formation was enhanced. Finally, at a higher concentration (50 μg/L) memory formation was blocked. To determine if the disassociation of Ag+ from the AgNPs caused the effects on memory we performed similar experiments with AgNO3 and found similar concentration-dependent results. Finally, we found that snails perceive the AgNPs differently from Ag+ as there was context specific memory. That is, snails trained in AgNPs did not show memory when tested in Ag+ and vice-versa. We believe that changes in memory formation may be a more sensitive determination of AgNPs on aquatic organisms than the determination of a LC50.
Collapse
Affiliation(s)
- Austin Young
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
21
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Weak involvement of octopamine in aversive taste learning in a snail. Neurobiol Learn Mem 2017; 141:189-198. [DOI: 10.1016/j.nlm.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/06/2023]
|
22
|
Hughes E, Shymansky T, Swinton E, Lukowiak KS, Swinton C, Sunada H, Protheroe A, Phillips I, Lukowiak K. Strain-specific differences of the effects of stress on memory in Lymnaea. J Exp Biol 2017; 220:891-899. [DOI: 10.1242/jeb.149161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Stress alters the ability to form, recall and maintain memory according to the Yerkes–Dodson/Hebb (YDH) law. The effects of environmentally relevant stressors, such as low environmental calcium and crowding, on learning and memory have previously been described in a laboratory-reared ‘average’ strain of Lymnaea stagnalis (i.e. the Dutch strain) as well as two strains of freshly collected L. stagnalis with enhanced memory formation abilities (i.e. ‘smart’ snails). Here, we use L. stagnalis to study the effects of other environmentally relevant stressors on memory formation in two other strains of freshly collected snails, one ‘smart’ and one ‘average’. The stressors we examined are thermal, resource restriction combined with food odour, predator detection and, for the first time, tissue injury (shell damage). We show that the same stressor has significantly different effects on memory formation depending on whether snails are ‘smart’ or ‘average’. Specifically, our data suggest that a stressor or a combination of stressors act to enhance memory in ‘average’ snails but obstruct memory formation in ‘smart’ snails. These results are consistent with the YDH law and our hypothesis that ‘smart’ snails are more easily stressed than ‘average’ snails.
Collapse
Affiliation(s)
- Emily Hughes
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Tamila Shymansky
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Kai S. Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Amy Protheroe
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Iain Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
23
|
Sunada H, Lukowiak K, Ito E. Cerebral Giant Cells are Necessary for the Formation and Recall of Memory of Conditioned Taste Aversion inLymnaea. Zoolog Sci 2017; 34:72-80. [DOI: 10.2108/zs160152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea. Biol Open 2016; 5:1869-1873. [PMID: 27815244 PMCID: PMC5200912 DOI: 10.1242/bio.021634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pond snail Lymnaea learns conditioned taste aversion (CTA) and remembers not to respond to food substances that initially cause a feeding response. The possible relationship between how well snails learn to follow taste-aversion training and brain dopamine contents is not known. We examined this relationship and found the following: first, snails in the act of eating just before the commencement of CTA training were poor learners and had the highest dopamine contents in the brain; second, snails which had an ad libitum access to food, but were not eating just before training, were average learners and had lower dopamine contents; third, snails food-deprived for one day before training were the best learners and had significantly lower contents of dopamine compared to the previous two cohorts. There was a negative correlation between the CTA grades and the brain dopamine contents in these three cohorts. Fourth, snails food-deprived for five days before training were poor learners and had higher dopamine contents. Thus, severe hunger increased the dopamine content in the brain. Because dopamine functions as a reward transmitter, CTA in the severely deprived snails (i.e. the fourth cohort) was thought to be mitigated by a high dopamine content.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Mugiho Kaneda
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
25
|
Takigami S, Sunada H, Lukowiak K, Ito E, Sakakibara M. An automated learning apparatus for classical conditioning of Lymnaea stagnalis. J Neurosci Methods 2016; 259:115-121. [PMID: 26617319 DOI: 10.1016/j.jneumeth.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pond snail Lymnaea stagnalis is capable of taste avoidance classical conditioning (TAC) with sucrose as the conditional stimulus (CS) and mechanical prodding as the unconditional stimulus (US). After successful training, feeding behavior is significantly suppressed in response to CS presentation. NEW METHOD An automated apparatus is described for the training of multiple snails up to 10 snails at the same time. The new apparatus employs an electrical shock obtained from a 9-V dry cell to deliver a consistent and effective current amplitude of 0.4μA (i.e., the US). RESULTS Using this apparatus, 10 snails can be conditioned simultaneously. We found that the optimal parameters to result in both short (STM) and long-term memory (LTM) were 15 paired presentations of the CS and US with a 5-min inter-trial interval (ITI) and 0.2-s current duration. However, both STM and LTM were observed with other ITIs tested. Successful TAC with only a single pairing of the CS-US occurred with a CS of 100mM sucrose solution for 60s followed by a US of 9V with 0.4μA for 5s. COMPARISON WITH EXISTING METHOD The use of automated training apparatus for TAC will enable us to better examine the relationship between strength of CS and US.
Collapse
Affiliation(s)
- Satoshi Takigami
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Manabu Sakakibara
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan.
| |
Collapse
|
26
|
Knezevic B, Komatsuzaki Y, de Freitas E, Lukowiak K. A flavanoid component of chocolate quickly reverses an imposed memory deficit. ACTA ACUST UNITED AC 2016; 219:816-23. [PMID: 26823103 DOI: 10.1242/jeb.130765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/30/2015] [Indexed: 01/27/2023]
Abstract
The ability to remember is influenced by environmental and lifestyle factors, such as stress and diet. A flavanol contained in chocolate, epicatechin (Epi), has been shown to enhance long-term memory (LTM) formation in Lymnaea. Combining two stressors (low-calcium pond water and crowding) blocks learning and all forms of memory; that is, this combination of environmentally relevant stressors creates a memory-unfriendly state. We tested the hypothesis that Epi will immediately reverse the memory-unfriendly state, i.e. that snails in the memory-deficit state when trained in Epi will immediately become competent to learn and form memory. We found that Epi not only reverses the memory-deficit state but also further enhances LTM formation. Thus, a naturally occurring bioactive plant compound can overcome a memory-unfriendly state. This supports the idea that bioactive substances may mitigate memory-making deficits that, for example, occur with ageing.
Collapse
Affiliation(s)
- Bogdan Knezevic
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Yoshimasa Komatsuzaki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Emily de Freitas
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
27
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|
28
|
Ito E, Yamagishi M, Hatakeyama D, Watanabe T, Fujito Y, Dyakonova V, Lukowiak K. Memory block: a consequence of conflict resolution. ACTA ACUST UNITED AC 2015; 218:1699-704. [PMID: 25883377 DOI: 10.1242/jeb.120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022]
Abstract
Food deprivation for 1 day in the pond snail Lymnaea stagnalis before aversive classical conditioning results in optimal conditioned taste aversion (CTA) and long-term memory (LTM) formation, whereas 5-day food deprivation before training does not. We hypothesize that snails do in fact learn and form LTM when trained after prolonged food deprivation, but that severe food deprivation blocks their ability to express memory. We trained 5-day food-deprived snails under various conditions, and found that memory was indeed formed but is overpowered by severe food deprivation. Moreover, CTA-LTM was context dependent and was observed only when the snails were in a context similar to that in which the training occurred.
Collapse
Affiliation(s)
- Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Miki Yamagishi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Laboratory of Neurocybernetics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yutaka Fujito
- Department of Systems Neuroscience, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute for Developmental Biology, RAS, Moscow 119909, Russia
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|