1
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
Affiliation(s)
- Ilana Levy
- Undergraduate Program in Biochemistry, Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Arvidson
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Rana A, Adams ME, Libersat F. Parasitoid wasp venom re-programs host behavior through downmodulation of brain central complex activity and motor output. J Exp Biol 2023; 226:286758. [PMID: 36700409 PMCID: PMC10088415 DOI: 10.1242/jeb.245252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
The parasitoid wasp Ampulex compressa hunts down its host, the American cockroach (Periplaneta americana), and envenomates its brain to make it a behaviorally compliant food supply for its offspring. The primary target of the wasp sting is a locomotory command center called the central complex (CX). In the present study, we employ, for the first time, chronic recordings of patterned cockroach CX activity in real time as the brain is infused with wasp venom. CX envenomation is followed by sequential changes in the pattern of neuronal firing that can be divided into three distinct temporal phases during the 2 h interval after venom injection: (1) reduction in neuronal activity for roughly 10 min immediately after venom injection; (2) rebound of activity lasting up to 25 min; (3) reduction of ongoing activity for up to 2 h. Long-term reduction of CX activity after venom injection is accompanied by decreased activity of both descending interneurons projecting to thoracic locomotory circuitry (DINs) and motor output. Thus, in this study, we provide a plausible chain of events starting in the CX that leads to decreased host locomotion following brain envenomation. We propose that these events account for the onset and maintenance of the prolonged hypokinetic state observed in stung cockroaches.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- Departments of Entomology and Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Rana A, Emanuel S, Adams ME, Libersat F. Suppression of host nocifensive behavior by parasitoid wasp venom. Front Physiol 2022; 13:907041. [PMID: 36035493 PMCID: PMC9411936 DOI: 10.3389/fphys.2022.907041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The parasitoid wasp Ampulex compressa envenomates the brain of its host the American cockroach (Periplaneta americana), thereby making it a behaviorally compliant food supply for its offspring. The target of venom injection is a locomotory command center in the brain called the central complex. In this study, we investigate why stung cockroaches do not respond to injuries incurred during the manipulation process by the wasp. In particular, we examine how envenomation compromises nociceptive signaling pathways in the host. Noxious stimuli applied to the cuticle of stung cockroaches fail to evoke escape responses, even though nociceptive interneurons projecting to the brain respond normally. Hence, while nociceptive signals are carried forward to the brain, they fail to trigger robust nocifensive behavior. Electrophysiological recordings from the central complex of stung animals demonstrate decreases in peak firing rate, total firing, and duration of noxious-evoked activity. The single parameter best correlated with altered noxious-evoked behavioral responses of stung cockroaches is reduced duration of the evoked response in the central complex. Our findings demonstrate how the reproductive strategy of a parasitoid wasp is served by venom-mediated elimination of aversive, nocifensive behavior in its host.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael E. Adams
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
- *Correspondence: Frederic Libersat,
| |
Collapse
|
4
|
Nordio S, Kaiser M, Adams ME, Libersat F. Parasitoid wasp venom manipulates host innate behavior via subtype-specific dopamine receptor activation. J Exp Biol 2022; 225:274808. [PMID: 35320357 PMCID: PMC8996814 DOI: 10.1242/jeb.243674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
The subjugation strategy employed by the jewel wasp is unique in that it manipulates the behavior of its host, the American cockroach, rather than inducing outright paralysis. Upon envenomation directly into the central complex (CX), a command center in the brain for motor behavior, the stung cockroach initially engages in intense grooming behavior, then falls into a lethargic sleep-like state referred to as hypokinesia. Behavioral changes evoked by the sting are due at least in part to the presence of the neurotransmitter dopamine in the venom. In insects, dopamine receptors are classified as two families, the D1-like and the D2-like receptors. However, specific roles played by dopamine receptor subtypes in venom-induced behavioral manipulation by the jewel wasp remain largely unknown. In the present study, we used a pharmacological approach to investigate roles of D1-like and D2-like receptors in behaviors exhibited by stung cockroaches, focusing on grooming. Specifically, we assessed behavioral outcomes of focal CX injections of dopamine receptor agonists and antagonists. Both specific and non-specific compounds were used. Our results strongly implicate D1-like dopamine receptors in venom-induced grooming. Regarding induction of hypokinesia, our findings demonstrate that dopamine signaling is necessary for induction of long-lasting hypokinesia caused by brain envenomation. Highlighted Article: Subtype-specific dopamine receptors are involved in the manipulation of host behavior by the parasitoid jewel wasp.
Collapse
Affiliation(s)
- Stefania Nordio
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Maayan Kaiser
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Michael E Adams
- Department of Entomology, University of California, Riverside, CA 92521, USA.,Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
5
|
de Bekker C, Das B. Hijacking time: How Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. Parasite Immunol 2022; 44:e12909. [PMID: 35103986 PMCID: PMC9287076 DOI: 10.1111/pim.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Ophiocordyceps fungi manipulate ant behaviour as a transmission strategy. Conspicuous changes in the daily timing of disease phenotypes suggest that Ophiocordyceps and other manipulators could be hijacking the host clock. We discuss the available data that support the notion that Ophiocordyceps fungi could be hijacking ant host clocks and consider how altering daily behavioural rhythms could benefit the fungal infection cycle. By reviewing time‐course transcriptomics data for the parasite and the host, we argue that Ophiocordyceps has a light‐entrainable clock that might drive daily expression of candidate manipulation genes. Moreover, ant rhythms are seemingly highly plastic and involved in behavioural division of labour, which could make them susceptible to parasite hijacking. To provisionally test whether the expression of ant behavioural plasticity and rhythmicity genes could be affected by fungal manipulation, we performed a gene co‐expression network analysis on ant time‐course data and linked it to available behavioural manipulation data. We found that behavioural plasticity genes reside in the same modules as those affected during fungal manipulation. These modules showed significant connectivity with rhythmic gene modules, suggesting that Ophiocordyceps could be indirectly affecting the expression of those genes as well.
Collapse
Affiliation(s)
- Charissa de Bekker
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Biplabendu Das
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
6
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
7
|
Report on the First Symposium on Invertebrate Neuroscience held on 13-17th August 2019 at the Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, Hungary. INVERTEBRATE NEUROSCIENCE 2020; 20:13. [PMID: 32816072 DOI: 10.1007/s10158-020-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
This meeting report provides an overview of the oral and poster presentations at the first international symposium for invertebrate neuroscience. The contents reflect the contributions of invertebrate neuroscience in addressing fundamental and fascinating challenges in understanding the neural substrates of animal behaviour.
Collapse
|
8
|
Emanuel S, Kaiser M, Pflueger HJ, Libersat F. On the Role of the Head Ganglia in Posture and Walking in Insects. Front Physiol 2020; 11:135. [PMID: 32153430 PMCID: PMC7047666 DOI: 10.3389/fphys.2020.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/07/2020] [Indexed: 12/04/2022] Open
Abstract
In insects, locomotion is the result of rhythm generating thoracic circuits and their modulation by sensory reflexes and by inputs from the two head ganglia, the cerebral and the gnathal ganglia (GNG), which act as higher order neuronal centers playing different functions in the initiation, goal-direction, and maintenance of movement. Current knowledge on the various roles of major neuropiles of the cerebral ganglia (CRG), such as mushroom bodies (MB) and the central complex (CX), in particular, are discussed as well as the role of the GNG. Thoracic and head ganglia circuitries are connected by ascending and descending neurons. While less is known about the ascending neurons, recent studies in large insects and Drosophila have begun to unravel the identity of descending neurons and their appropriate roles in posture and locomotion. Descending inputs from the head ganglia are most important in initiating and modulating thoracic central pattern generating circuitries to achieve goal directed locomotion. In addition, the review will also deal with some known monoaminergic descending neurons which affect the motor circuits involved in posture and locomotion. In conclusion, we will present a few issues that have, until today, been little explored. For example, how and which descending neurons are selected to engage a specific motor behavior and how feedback from thoracic circuitry modulate the head ganglia circuitries. The review will discuss results from large insects, mainly locusts, crickets, and stick insects but will mostly focus on cockroaches and the fruit fly, Drosophila.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maayan Kaiser
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hans-Joachim Pflueger
- Fachbereich Biologie Chemie Pharmazie, Institut für Biologie, Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
9
|
Kaiser M, Arvidson R, Zarivach R, Adams ME, Libersat F. Molecular cross-talk in a unique parasitoid manipulation strategy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:64-78. [PMID: 30508629 DOI: 10.1016/j.ibmb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Envenomation of cockroach cerebral ganglia by the parasitoid Jewel wasp, Ampulex compressa, induces specific, long-lasting behavioural changes. We hypothesized that this prolonged action results from venom-induced changes in brain neurochemistry. Here, we address this issue by first identifying molecular targets of the venom, i.e., proteins to which venom components bind and interact with to mediate altered behaviour. Our results show that venom components bind to synaptic proteins and likely interfere with both pre- and postsynaptic processes. Since behavioural changes induced by the sting are long-lasting and reversible, we hypothesized further that long-term effects of the venom must be mediated by up or down regulation of cerebral ganglia proteins. We therefore characterize changes in cerebral ganglia protein abundance of stung cockroaches at different time points after the sting by quantitative mass spectrometry. Our findings indicate that numerous proteins are differentially expressed in cerebral ganglia of stung cockroaches, many of which are involved in signal transduction, such as the Rho GTPase pathway, which is implicated in synaptic plasticity. Altogether, our data suggest that the Jewel wasp commandeers cockroach behaviour through molecular cross-talk between venom components and molecular targets in the cockroach central nervous system, leading to broad-based alteration of synaptic efficacy and behavioural changes that promote successful development of wasp progeny.
Collapse
Affiliation(s)
- Maayan Kaiser
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Ryan Arvidson
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Michael E Adams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
10
|
Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, Nolan C, Pan S, Stajich JE, Libersat F, Adams ME. Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Mol Cell Proteomics 2019; 18:99-114. [PMID: 30293061 PMCID: PMC6317478 DOI: 10.1074/mcp.ra118.000908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The parasitoid emerald jewel wasp Ampulex compressa induces a compliant state of hypokinesia in its host, the American cockroach Periplaneta americana through direct envenomation of the central nervous system (CNS). To elucidate the biochemical strategy underlying venom-induced hypokinesia, we subjected the venom apparatus and milked venom to RNAseq and proteomics analyses to construct a comprehensive "venome," consisting of 264 proteins. Abundant in the venome are enzymes endogenous to the host brain, including M13 family metalloproteases, phospholipases, adenosine deaminase, hyaluronidase, and neuropeptide precursors. The amphipathic, alpha-helical ampulexins are among the most abundant venom components. Also prominent are members of the Toll/NF-κB signaling pathway, including proteases Persephone, Snake, Easter, and the Toll receptor ligand Spätzle. We find evidence that venom components are processed following envenomation. The acidic (pH∼4) venom contains unprocessed neuropeptide tachykinin and corazonin precursors and is conspicuously devoid of the corresponding processed, biologically active peptides. Neutralization of venom leads to appearance of mature tachykinin and corazonin, suggesting that the wasp employs precursors as a prolonged time-release strategy within the host brain post-envenomation. Injection of fully processed tachykinin into host cephalic ganglia elicits short-term hypokinesia. Ion channel modifiers and cytolytic toxins are absent in A. compressa venom, which appears to hijack control of the host brain by introducing a "storm" of its own neurochemicals. Our findings deepen understanding of the chemical warfare underlying host-parasitoid interactions and in particular neuromodulatory mechanisms that enable manipulation of host behavior to suit the nutritional needs of opportunistic parasitoid progeny.
Collapse
Affiliation(s)
- Ryan Arvidson
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Maayan Kaiser
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sang Soo Lee
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521
| | - Jean-Paul Urenda
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Christopher Dail
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Haroun Mohammed
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Cebrina Nolan
- **Department of Entomology, University of California, Riverside, California 92521
| | - Songqin Pan
- ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521
| | - Jason E Stajich
- §§Department of Microbiology & Plant Pathology, University of California, Riverside, California 92521
| | - Frederic Libersat
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521;; **Department of Entomology, University of California, Riverside, California 92521;; ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;.
| |
Collapse
|
11
|
Catania KC. How Not to Be Turned into a Zombie. BRAIN, BEHAVIOR AND EVOLUTION 2018; 92:32-46. [PMID: 30380540 DOI: 10.1159/000490341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022]
Abstract
The emerald jewel wasp (Ampulex compressa) is renowned for its ability to zombify the American cockroach (Periplaneta americana) with a sting to the brain. When the venom takes effect, the cockroach becomes passive and can be led by its antenna into a hole, where the wasp deposits an egg and then seals the exit with debris. The cockroach has the ability to walk, run, or fly if properly stimulated, but it does not try to escape as it is slowly eaten alive by the developing wasp larva. Although the composition and effects of the wasp's venom have been investigated, no studies have detailed how cockroaches might prevent this grim fate. Here it is shown that many cockroaches deter wasps with a vigorous defense. Successful cockroaches elevated their bodies, bringing their neck out of reach, and kicked at the wasp with their spiny hind legs, often striking the wasp's head multiple times. Failing this, the elevated, "on-guard" position allowed cockroaches to detect and evade the wasp's lunging attack. If grasped, the cockroaches parried the stinger with their legs, used a "stiff-arm" defense to hold back the stinger, and could stab at, and dislodge, the wasp with tibial spines. Lastly, cockroaches bit at the abdomen of wasps delivering the brain sting. An aggressive defense from the outset was most successful. Thus, for a cockroach not to become a zombie, the best strategy is: be vigilant, protect your throat, and strike repeatedly at the head of the attacker.
Collapse
|
12
|
Knebel D, Assaf Y, Ayali A. The use of MEMRI for monitoring central nervous system activity during intact insect walking. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:48-53. [PMID: 29758239 DOI: 10.1016/j.jinsphys.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Monitoring neuronal activity in the intact behaving animal is most desired in neuroethological research, yet it is rarely straightforward or even feasible. Here we present the use of manganese enhanced magnetic resonance imaging (MEMRI), a technique allowing monitoring the activity of an animal's nervous system during specific behavioral patterns. Using MEMRI we were able to show activity in different ganglia of the central nervous system of intact locusts during walking. RESULTS We injected two groups of locusts with manganese, which serves as a magnetic contrast agent. One group was forced to walk on a treadmill for two hours, while the other was immobilized and served as a control. Subsequently, all animals were scanned in a T1 MRI protocol, and the accumulation of manganese in the neuronal tissues that were active during walking was demonstrated by comparing the scans of the two groups. Two neuronal sites showed significantly higher T1 signal in the walking locusts compared to the immobilized ones: the prothoracic ganglion, which locally controls the front legs, and the subesophageal ganglion, a head ganglion which takes part in initiation and maintenance of walking. CONCLUSION MEMRI is a potent, non-invasive technique for monitoring neuronal activity in intact locusts, and arthropods in general. Specifically, it provides a promising way for revealing the role of central and high-order neuronal structures in motor behaviors such as walking.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Libersat F, Kaiser M, Emanuel S. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts. Front Psychol 2018; 9:572. [PMID: 29765342 PMCID: PMC5938628 DOI: 10.3389/fpsyg.2018.00572] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite) modifies a particular neural network, and thus particular behaviors, of another species (the host). Such parasite-host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.
Collapse
Affiliation(s)
- Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Kaiser
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
14
|
Knebel D, Wörner J, Rillich J, Nadler L, Ayali A, Couzin-Fuchs E. The subesophageal ganglion modulates locust inter-leg sensory-motor interactions via contralateral pathways. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:116-124. [PMID: 29577874 DOI: 10.1016/j.jinsphys.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The neural control of insect locomotion is distributed among various body segments. Local pattern-generating circuits at the thoracic ganglia interact with incoming sensory signals and central descending commands from the head ganglia. The evidence from different insect preparations suggests that the subesophageal ganglion (SEG) may play an important role in locomotion-related tasks. In a previous study, we demonstrated that the locust SEG modulates the coupling pattern between segmental leg CPGs in the absence of sensory feedback. Here, we investigated its role in processing and transmitting sensory information to the leg motor centers and mapped the major related neural pathways. Specifically, the intra- and inter-segmental transfer of leg-feedback were studied by simultaneously monitoring motor responses and descending signals from the SEG. Our findings reveal a crucial role of the SEG in the transfer of intersegmental, but not intrasegmental, signals. Additional lesion experiments, in which the intersegmental connectives were cut at different locations, together with double nerve staining, indicated that sensory signals are mainly transferred to the SEG via the connective contralateral to the stimulated leg. We therefore suggest that, similar to data reported for vertebrates, insect leg sensory-motor loops comprise contralateral ascending pathways to the head and ipsilateral descending ones.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Johanna Wörner
- Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Jan Rillich
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonard Nadler
- Institut für Biologie, Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
15
|
Moore EL, Arvidson R, Banks C, Urenda JP, Duong E, Mohammed H, Adams ME. Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa. Biochemistry 2018; 57:1907-1916. [DOI: 10.1021/acs.biochem.7b00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Abstract
Insect behavior can be manipulated by parasites, and in many cases, such manipulation involves the central and peripheral nervous system. Neuroparasitology is an emerging branch of biology that deals with parasites that can control the nervous system of their host. The diversity of parasites that can manipulate insect behavior ranges from viruses to macroscopic worms and also includes other insects that have evolved to become parasites (notably, parasitic wasps). It is remarkable that the precise manipulation observed does not require direct entry into the insect brain and can even occur when the parasite is outside the body. We suggest that a spatial view of manipulation provides a holistic approach to examining such interactions. Integration across approaches from natural history to advanced imaging techniques, omics, and experiments will provide new vistas in neuroparasitology. We also suggest that for researchers interested in the proximate mechanisms of insect behaviors, studies of parasites that have evolved to control such behavior is of significant value.
Collapse
Affiliation(s)
- David P Hughes
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Frederic Libersat
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel;
- Zlotowski Center for Neurosciences, Ben Gurion University, Beer Sheva 8410501, Israel
| |
Collapse
|
17
|
Plath JA, Entler BV, Kirkerud NH, Schlegel U, Galizia CG, Barron AB. Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay. Front Behav Neurosci 2017; 11:98. [PMID: 28611605 PMCID: PMC5447682 DOI: 10.3389/fnbeh.2017.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component.
Collapse
Affiliation(s)
- Jenny A Plath
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of KonstanzKonstanz, Germany
| | - Brian V Entler
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biology, University of ScrantonScranton, PA, United States
| | - Nicholas H Kirkerud
- Department of Biology, University of KonstanzKonstanz, Germany.,International Max-Planck Research School for Organismal Biology, University of KonstanzKonstanz, Germany
| | - Ulrike Schlegel
- Department of Biology, University of KonstanzKonstanz, Germany.,Department of Biosciences, University of OsloOslo, Norway
| | | | - Andrew B Barron
- Department of Biological Sciences, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
18
|
Emanuel S, Libersat F. Do Quiescence and Wasp Venom-Induced Lethargy Share Common Neuronal Mechanisms in Cockroaches? PLoS One 2017; 12:e0168032. [PMID: 28045911 PMCID: PMC5207667 DOI: 10.1371/journal.pone.0168032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
The escape behavior of a cockroach may not occur when it is either in a quiescent state or after being stung by the jewel wasp (Ampulex compressa). In the present paper, we show that quiescence is an innate lethargic state during which the cockroach is less responsive to external stimuli. The neuronal mechanism of such a state is poorly understood. In contrast to quiescence, the venom-induced lethargic state is not an innate state in cockroaches. The Jewel Wasp disables the escape behavior of cockroaches by injecting its venom directly in the head ganglia, inside a neuropile called the central complex a 'higher center' known to regulate motor behaviors. In this paper we show that the coxal slow motoneuron ongoing activity, known to be involved in posture, is reduced in quiescent animals, as compared to awake animals, and it is further reduced in stung animals. Moreover, the regular tonic firing of the slow motoneuron present in both awake and quiescent cockroaches is lost in stung cockroaches. Injection of procaine to prevent neuronal activity into the central complex to mimic the wasp venom injection produces a similar effect on the activity of the slow motoneuron. In conclusion, we speculate that the neuronal modulation during the quiescence and venom-induced lethargic states may occur in the central complex and that both states could share a common neuronal mechanism.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
19
|
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0053. [PMID: 26554043 PMCID: PMC4650127 DOI: 10.1098/rstb.2015.0053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | | | - Frank Hirth
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic & Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Parasitic Manipulation of Host Behaviour: Baculovirus SeMNPV EGT Facilitates Tree-Top Disease in Spodoptera exigua Larvae by Extending the Time to Death. INSECTS 2015; 6:716-31. [PMID: 26463412 PMCID: PMC4598661 DOI: 10.3390/insects6030716] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
Abstract
Many parasites enhance their dispersal and transmission by manipulating host behaviour. One intriguing example concerns baculoviruses that induce hyperactivity and tree-top disease (i.e., climbing to elevated positions prior to death) in their caterpillar hosts. Little is known about the underlying mechanisms of such parasite-induced behavioural changes. Here, we studied the role of the ecdysteroid UDP-glucosyltransferase (egt) gene of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in tree-top disease in S. exigua larvae. Larvae infected with a mutant virus lacking the egt gene exhibited a shorter time to death and died before the induction of tree-top disease. Moreover, deletion of either the open reading frame or the ATG start codon of the egt gene prevented tree-top disease, indicating that the EGT protein is involved in this process. We hypothesize that SeMNPV EGT facilitates tree-top disease in S. exigua larvae by prolonging the larval time to death. Additionally, we discuss the role of egt in baculovirus-induced tree-top disease.
Collapse
|