1
|
Miller ML, Glandon HL, Tift MS, Pabst DA, Koopman HN. Remarkable consistency of spinal cord microvasculature in highly adapted diving odontocetes. Front Physiol 2022; 13:1011869. [PMID: 36505066 PMCID: PMC9728530 DOI: 10.3389/fphys.2022.1011869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Odontocetes are breath-hold divers with a suite of physiological, anatomical, and behavioral adaptations that are highly derived and vastly different from those of their terrestrial counterparts. Because of these adaptations for diving, odontocetes were originally thought to be exempt from the harms of nitrogen gas embolism while diving. However, recent studies have shown that these mammals may alter their dive behavior in response to anthropogenic sound, leading to the potential for nitrogen supersaturation and bubble formation which may cause decompression sickness in the central nervous system (CNS). We examined the degree of interface between blood, gases, and neural tissues in the spinal cord by quantifying its microvascular characteristics in five species of odontocetes (Tursiops truncatus, Delphinus delphis, Grampus griseus, Kogia breviceps, and Mesoplodon europaeus) and a model terrestrial species (the pig-Sus scrofa domesticus) for comparison. This approach allowed us to compare microvascular characteristics (microvascular density, branching, and diameter) at several positions (cervical, thoracic, and lumbar) along the spinal cord from odontocetes that are known to be either deep or shallow divers. We found no significant differences (p < 0.05 for all comparisons) in microvessel density (9.30-11.18%), microvessel branching (1.60-2.12 branches/vessel), or microvessel diameter (11.83-16.079 µm) between odontocetes and the pig, or between deep and shallow diving odontocete species. This similarity of spinal cord microvasculature anatomy in several species of odontocetes as compared to the terrestrial mammal is in contrast to the wide array of remarkable physio-anatomical adaptations marine mammals have evolved within their circulatory system to cope with the physiological demands of diving. These results, and other studies on CNS lipids, indicate that the spinal cords of odontocetes do not have specialized features that might serve to protect them from Type II DCS.
Collapse
Affiliation(s)
- Megan L. Miller
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | | | | | | | | |
Collapse
|
2
|
Burslem A, Isojunno S, Pirotta E, Miller PJO. Modelling the impact of condition-dependent responses and lipid-store availability on the consequences of disturbance in a cetacean. CONSERVATION PHYSIOLOGY 2022; 10:coac069. [PMID: 36415287 PMCID: PMC9672687 DOI: 10.1093/conphys/coac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Lipid-store body condition is fundamental to how animals cope with environmental fluctuations, including anthropogenic change. As it provides an energetic buffer, body condition is expected to influence risk-taking strategies, with both positive and negative relationships between body condition and risk-taking posited in the literature. Individuals in good condition may take more risks due to state-dependent safety ('ability-based' explanation), or alternatively fewer risks due to asset protection and reduced need to undertake risky foraging ('needs-based' explanation). Such state-dependent responses could drive non-linear impacts of anthropogenic activities through feedback between body condition and behavioural disturbance. Here, we present a simple bioenergetic model that explicitly incorporates hypothetical body condition-dependent response strategies for a cetacean, the sperm whale. The model considered the consequences of state-dependent foraging cessation and availability of wax ester (WE) lipids for calf provisioning and female survival. We found strikingly different consequences of disturbance depending on strategy and WE availability scenarios. Compared with the null strategy, where responses to disturbance were independent of body condition, the needs-based strategy mitigated predicted reductions in provisioning by 10%-13%, while the ability-based strategy exaggerated reductions by 63%-113%. Lower WE availability resulted in more extreme outcomes because energy stores were smaller relative to the daily energy balance. In the 0% availability scenario, while the needs-based strategy reduced deaths by 100%, the ability-based strategy increased them by 335% relative to null and by 56% relative to the same strategy under the 5%-6.7% WE availability scenario. These results highlight that state-dependent disturbance responses and energy store availability could substantially impact the population consequences of disturbance. Our ability to set appropriate precautionary disturbance thresholds therefore requires empirical tests of ability- vs needs-based response modification as a function of body condition and a clearer understanding of energy store availability.
Collapse
Affiliation(s)
- Alec Burslem
- Corresponding author: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. Tel: +44 (0) 7984318003.
| | - Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
3
|
Gabler-Smith MK, Berger AJ, Gay DM, Kinsey ST, Westgate AJ, Koopman HN. Microvascular anatomy suggests varying aerobic activity levels in the adipose tissues of diving tetrapods. J Comp Physiol B 2022; 192:623-645. [PMID: 35779114 DOI: 10.1007/s00360-022-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Adipose tissue has many important functions including metabolic energy storage, endocrine functions, thermoregulation and structural support. Given these varied functions, the microvascular characteristics within the tissue will have important roles in determining rates/limits of exchange of nutrients, waste, gases and molecular signaling molecules between adipose tissue and blood. Studies on skeletal muscle have suggested that tissues with higher aerobic capacity contain higher microvascular density (MVD) with lower diffusion distances (DD) than less aerobically active tissues. However, little is known about MVD in adipose tissue of most vertebrates; therefore, we measured microvascular characteristics (MVD, DD, diameter and branching) and cell size to explore the comparative aerobic activity in the adipose tissue across diving tetrapods, a group of animals facing additional physiological and metabolic stresses associated with diving. Adipose tissues of 33 animals were examined, including seabirds, sea turtles, pinnipeds, baleen whales and toothed whales. MVD and DD varied significantly (P < 0.001) among the groups, with seabirds generally having high MVD, low DD and small adipocytes. These characteristics suggest that microvessel arrangement in short duration divers (seabirds) reflects rapid lipid turnover, compared to longer duration divers (beaked whales) which have relatively lower MVD and greater DD, perhaps reflecting the requirement for tissue with lower metabolic activity, minimizing energetic costs during diving. Across all groups, predictable scaling patterns in MVD and DD such as those observed in skeletal muscle did not emerge, likely reflecting the fact that unlike skeletal muscle, adipose tissue performs many different functions in marine organisms, often within the same tissue compartment.
Collapse
Affiliation(s)
- Molly K Gabler-Smith
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA. .,Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Amy J Berger
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - D Mark Gay
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Stephen T Kinsey
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Andrew J Westgate
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Heather N Koopman
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
4
|
Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats. J Comp Physiol B 2021; 191:815-829. [PMID: 33973058 DOI: 10.1007/s00360-021-01373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Marine mammals are exposed to O2-limitation and increased N2 gas concentrations as they dive to exploit habitat and food resources. The lipid-rich tissues (blubber, acoustic, neural) are of particular concern as N2 is five times more soluble in lipid than in blood or muscle, creating body compartments that can become N2 saturated, possibly leading to gas emboli upon surfacing. We characterized lipids in the neural tissues of marine mammals to determine whether they have similar lipid profiles compared to terrestrial mammals. Lipid profiles (lipid content, lipid class composition, and fatty acid signatures) were determined in the neural tissues of 12 cetacean species with varying diving regimes, and compared to two species of terrestrial mammals. Neural tissue lipid profile was not significantly different in marine versus terrestrial mammals across tissue types. Within the marine species, average dive depth was not significantly associated with the lipid profile of cervical spinal cord. Across species, tissue type (brain, spinal cord, and spinal nerve) was a significant factor in lipid profile, largely due to the presence of storage lipids (triacylglycerol and wax ester/sterol ester) in spinal nerve tissue only. The stability of lipid signatures within the neural tissue types of terrestrial and marine species, which display markedly different dive behaviors, points to the consistent role of lipids in these tissues. These findings indicate that despite large differences in the level of N2 gas exposure by dive type in the species examined, the lipids of neural tissues likely do not have a neuroprotective role in marine mammals.
Collapse
|
5
|
Lipids of lung and lung fat emboli of the toothed whales (Odontoceti). Sci Rep 2020; 10:14752. [PMID: 32901077 PMCID: PMC7479150 DOI: 10.1038/s41598-020-71658-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Lipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans. In the present study we aimed first, to characterize the lipids ordinarily present in the lung tissue of seven cetacean species; and second, to better understand the etiopathogenesis of fat embolism by comparing the lipid composition of lungs positive for fat emboli, and those negative for emboli in Physeter macrocephalus and Ziphius cavirostris (two species in which fat emboli have been described). Results showed that lipid content and lipid classes did not differ among species or diving profiles. In contrast, fatty acid composition was significantly different between species, with C16:0 and C18:1ω9 explaining most of the differences. This baseline knowledge of healthy lung tissue lipid composition will be extremely useful in future studies assessing lung pathologies involving lipids. Concerning fat embolism, non-significant differences could be established between lipid content, lipid classes, and fatty acid composition. However, an unidentified peak was only found in the chromatogram for the two struck whales and merits further investigation.
Collapse
|
6
|
Gabler-Smith MK, Westgate AJ, Koopman HN. Fatty acid composition and N 2 solubility in triacylglycerol-rich adipose tissue: the likely importance of intact molecular structure. ACTA ACUST UNITED AC 2020; 223:jeb.216770. [PMID: 32001545 DOI: 10.1242/jeb.216770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Diving tetrapods (sea turtles, seabirds and marine mammals) are a biologically diverse group, yet all are under similar constraints: oxygen limitation and increased hydrostatic pressure at depth. Adipose tissue is important in the context of diving because nitrogen gas (N2) is five times more soluble in fat than in blood, creating a potential N2 sink in diving animals. Previous research demonstrates that unusual lipid composition [waxes and short-chained fatty acids (FA)] in adipose tissue of some whales leads to increased N2 solubility. We evaluated the N2 solubility of adipose tissue from 12 species of diving tetrapods lacking these unusual lipids to explore whether solubility in this tissue can be linked to lipid structure. Across all taxonomic groups, the same eight FA accounted for 70-80% of the entire lipid profile; almost all adipose tissues were dominated by monounsaturated FA (40.2-67.4 mol%). However, even with consistent FA profiles, there was considerable variability in N2 solubility, ranging from 0.051±0.003 to 0.073±0.004 ml N2 ml-1 oil. Interestingly, differences in N2 solubility could not be attributed to taxonomic group (P=0.06) or FA composition (P>0.10). These results lead to two main conclusions: (1) in triacylglycerol-only adipose tissues, the FA pool itself may not have a strong influence on N2 solubility; and (2) samples with similar FA profiles can have different N2 solubility values, suggesting that 3D arrangement of individual FA within a triacylglycerol molecule may have important roles in determining N2 solubility.
Collapse
Affiliation(s)
- Molly K Gabler-Smith
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA .,Harvard Museum of Comparative Zoology, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew J Westgate
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Heather N Koopman
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
7
|
Bernaldo de Quirós Y, Fernandez A, Baird RW, Brownell RL, Aguilar de Soto N, Allen D, Arbelo M, Arregui M, Costidis A, Fahlman A, Frantzis A, Gulland FMD, Iñíguez M, Johnson M, Komnenou A, Koopman H, Pabst DA, Roe WD, Sierra E, Tejedor M, Schorr G. Advances in research on the impacts of anti-submarine sonar on beaked whales. Proc Biol Sci 2020; 286:20182533. [PMID: 30963955 DOI: 10.1098/rspb.2018.2533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mass stranding events (MSEs) of beaked whales (BWs) were extremely rare prior to the 1960s but increased markedly after the development of naval mid-frequency active sonar (MFAS). The temporal and spatial associations between atypical BW MSEs and naval exercises were first observed in the Canary Islands, Spain, in the mid-1980s. Further research on BWs stranded in association with naval exercises demonstrated pathological findings consistent with decompression sickness (DCS). A 2004 ban on MFASs around the Canary Islands successfully prevented additional BW MSEs in the region, but atypical MSEs have continued in other places of the world, especially in the Mediterranean Sea, with examined individuals showing DCS. A workshop held in Fuerteventura, Canary Islands, in September 2017 reviewed current knowledge on BW atypical MSEs associated with MFAS. Our review suggests that the effects of MFAS on BWs vary among individuals or populations, and predisposing factors may contribute to individual outcomes. Spatial management specific to BW habitat, such as the MFAS ban in the Canary Islands, has proven to be an effective mitigation tool and mitigation measures should be established in other areas taking into consideration known population-level information.
Collapse
Affiliation(s)
- Y Bernaldo de Quirós
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - A Fernandez
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - R W Baird
- 2 Cascadia Research Collective , 218½ W. 4th Avenue, Olympia, WA 98501 , USA
| | - R L Brownell
- 3 NOAA Fisheries, Southwest Fisheries Science Center , Monterey, CA 93940 , USA
| | - N Aguilar de Soto
- 4 BIOECOMAC. Dept. Animal Biology, Geology and Edaphology, University of La Laguna , Tenerife , Spain
| | - D Allen
- 5 US Marine Mammal Commission , 4340 East-West Highway, Suite 700, Bethesda, MD 20814 , USA
| | - M Arbelo
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - M Arregui
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - A Costidis
- 6 Virginia Aquarium & Marine Science Center Stranding Response Program , 717 General Booth Blvd, Virginia Beach, VA 23451 , USA
| | - A Fahlman
- 7 Fundación Oceanogràfic de la Comunitat Valenciana , Gran Vía Marqués del Turia 19, 46005, Valencia , Spain
| | - A Frantzis
- 8 Pelagos Cetacean Research Institute , Terpsichoris 21, 16671 Vouliagmeni , Greece
| | - F M D Gulland
- 5 US Marine Mammal Commission , 4340 East-West Highway, Suite 700, Bethesda, MD 20814 , USA.,9 The Marine Mammal Center , 2000 Bunker Road, Sausalito, CA 94965 , USA
| | - M Iñíguez
- 10 Fundación Cethus and WDC , Cap J. Bermúdez 1598, (1636), Olivos, Prov. Buenos Aires , Argentina
| | - M Johnson
- 11 Sea Mammal Research Unit, University of St Andrews , St Andrews , UK
| | - A Komnenou
- 12 School of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - H Koopman
- 13 Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC 28403 , USA
| | - D A Pabst
- 13 Department of Biology and Marine Biology, University of North Carolina Wilmington , Wilmington, NC 28403 , USA
| | - W D Roe
- 14 Massey University , Palmerston North, PN4222 , New Zealand
| | - E Sierra
- 1 Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School , C/Transmontaña s/n, 35416, Arucas, Las Palmas , Spain
| | - M Tejedor
- 15 Canary Islands Stranding Network , Irlanda 7, Playa Blanca, 35580, Lanzarote , Spain
| | - G Schorr
- 16 Marine Ecology & Telemetry Research , 2468 Camp McKenzie Tr NW, Seabeck, WA 98380 , USA
| |
Collapse
|
8
|
Thom SR, Bhopale VM, Yu K, Yang M. Provocative decompression causes diffuse vascular injury in mice mediated by microparticles containing interleukin-1β. J Appl Physiol (1985) 2018; 125:1339-1348. [PMID: 30113270 DOI: 10.1152/japplphysiol.00620.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory mediators are known to be elevated in association with decompression from elevated ambient pressure, but their role in tissue damage or overt decompression sickness is unclear. Circulating microparticles (MPs) are also know to increase and because interleukin (IL)-1β is packaged within these particles, we hypothesized that IL-1β was responsible for tissue injuries. Here, we demonstrate that elevations of circulating MPs containing up to 9-fold higher concentrations of IL-1β occur while mice are exposed to high air pressure (790 kPa), whereas smaller particles carrying proteins specific to exosomes are not elevated. MPs number and intra-particle IL-1β concentration increase further over 13 hours post-decompression. MPs also exhibit intra-particle elevations of tumor necrosis factor-α, caspase-1, inhibitor of κB kinase -β and -γ, and elevated IL-6 is adsorbed to the surface of MPs. Contrary to lymphocytes, neutrophil NLRP3 inflammasome oligomerization and cell activation parameters occur during high pressure exposure, and additional evidence for activation are manifested post-decompression. Diffuse vascular damage, while not apparent immediately post-decompression, was present 2 hours later and remained elevated for at least 13 hours. Prophylactic administration of an IL-1β receptor inhibitor or neutralizing antibody to IL-1β inhibited MPs elevations, increases of all MPs-associated pro-inflammatory agents, and vascular damage. We conclude that an auto-activation process triggered by high pressure stimulates MPs production and concurrent inflammasome activation, and IL-1β is a proximal factor responsible for further cytokine production and decompression-associated vascular injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Veena M Bhopale
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Kevin Yu
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Ming Yang
- Emergency Medicine, University of Maryland School of Medicine, United States
| |
Collapse
|
9
|
Abstract
ABSTRACT
The Odontocetes (toothed whales) possess two types of specialized fat and, therefore, represent an interesting group when considering the evolution and function of adipose tissue. All whales have a layer of superficial blubber, which insulates and streamlines, provides buoyancy and acts as an energy reserve. Some toothed whales deposit large amounts of wax esters, rather than triacylglycerols, in blubber, which is unusual. Waxes have very different physical and physiological properties, which may impact blubber function. The cranial acoustic fat depots serve to focus sound during echolocation and hearing. The acoustic fats have unique morphologies; however, they are even more specialized biochemically because they are composed of a mix of endogenous waxes and triacylglycerols with unusual branched elements (derived from amino acids) that are not present in other mammals. Both waxes and branched elements alter how sound travels through a fat body; they are arranged in a 3D topographical pattern to focus sound. Furthermore, the specific branched-chain acid/alcohol synthesis mechanisms and products vary phylogenetically (e.g. dolphins synthesize lipids from leucine whereas beaked whales use valine). I propose that these specialized lipids evolved first in the head: wax synthesis first emerged to serve an acoustic function in toothed whales, with branched-chain synthesis adding additional acoustic focusing power, and some species secondarily retained wax synthesis pathways for blubber. Further research is necessary to elucidate specific molecular mechanisms controlling the synthesis and deposition of wax esters and branched-chain fatty acids, as well as their spatial deposition within tissues and within adipocytes.
Collapse
Affiliation(s)
- Heather N. Koopman
- Biology & Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28401, USA
| |
Collapse
|
10
|
Gabler MK, Gay DM, Westgate AJ, Koopman HN. Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow-diving odontocetes. J Morphol 2017; 279:458-471. [DOI: 10.1002/jmor.20782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Molly K. Gabler
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina 28403
| | - D. Mark Gay
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina 28403
| | - Andrew J. Westgate
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina 28403
| | - Heather N. Koopman
- Department of Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina 28403
| |
Collapse
|
11
|
Costidis AM, Rommel SA. The extracranial venous system in the heads of beaked whales, with implications on diving physiology and pathogenesis. J Morphol 2015; 277:34-64. [DOI: 10.1002/jmor.20437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/07/2015] [Accepted: 08/10/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Alexander M. Costidis
- Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina
| | - Sentiel A. Rommel
- Biology and Marine Biology; University of North Carolina Wilmington; Wilmington North Carolina
| |
Collapse
|
12
|
Knight K. High nitrogen solubility in jaw fats puts whales at risk. J Exp Biol 2015. [DOI: 10.1242/jeb.129270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|