1
|
Carson NM, Aslan DH, Ortega JD. The effect of forward postural lean on running economy, kinematics, and muscle activation. PLoS One 2024; 19:e0302249. [PMID: 38809851 PMCID: PMC11135760 DOI: 10.1371/journal.pone.0302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/31/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Running economy, commonly defined as the metabolic energy demand for a given submaximal running speed, is strongly associated with distance running performance. It is commonly believed among running coaches and runners that running with increased forward postural lean either from the ankle or waist improves running economy. However, recent biomechanical research suggests using a large forward postural lean during running may impair running economy due to increased demand on the leg muscles. PURPOSE This study tests the effect of altering forward postural lean and lean strategy on running economy, kinematics, and muscle activity. METHODS 16 healthy young adult runners (23±5 years, 8M/8F) ran on a motorized treadmill at 3.58m/s using three postural lean angles [upright, moderate lean (50% of maximal lean angle), and maximal lean] and two strategies (lean from ankle and lean from waist [trunk lean]). Metabolic energy consumption, leg kinematics, and muscle activation data were recorded for all trials. RESULTS Regardless of lean strategy, running with an increased forward postural lean (up to 8±2 degrees) increased metabolic cost (worsened economy) by 8% (p < .001), increased hip flexion (p < .001), and increased gluteus maximus (p = .016) and biceps femoris (p = .02) muscle activation during the stance phase. This relation between running economy and postural lean angle was similar between the ankle and trunk lean strategies (p = .743). CONCLUSION Running with a large forward postural lean reduced running economy and increased reliance on less efficient extensor leg muscles. In contrast, running with a more upright or moderate forward postural lean may be more energetically optimal, and lead to improved running performance.
Collapse
Affiliation(s)
- Nina M. Carson
- School of Applied Health, California State Polytechnic University Humboldt, Arcata, CA, United States of America
| | - Daniel H. Aslan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Justus D. Ortega
- School of Applied Health, California State Polytechnic University Humboldt, Arcata, CA, United States of America
| |
Collapse
|
2
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Barclay CJ, Curtin NA. The legacy of A. V. Hill's Nobel Prize winning work on muscle energetics. J Physiol 2022; 600:1555-1578. [PMID: 35114037 PMCID: PMC9304278 DOI: 10.1113/jp281556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
A. V. Hill was awarded the 1922 Nobel Prize, jointly with Otto Meyerhof, for Physiology or Medicine for his work on energetic aspects of muscle contraction. Hill used his considerable mathematical and experimental skills to investigate the relationships among muscle mechanics, biochemistry and heat production. The main ideas of the work for which the Nobel Prize was awarded were superseded within a decade and the legacy of Hill and Meyerhof's Nobel work was not a set of persistent, influential ideas but rather was a prolonged period of extraordinary activity that advanced the understanding of how muscles work far beyond the concepts that led to the Nobel Prize. Hill pioneered the integration of mathematics into the study of physiology and pharmacology. Particular aspects of Hill's own work that remain in common use in muscle physiology include mathematical descriptions of the relationships between muscle force output and shortening velocity and between force output and calcium concentration and the model of muscle as a contractile element in series with an elastic element. We describe some of the characteristics of Hill's broader scientific activities and then outline how Hill's work on muscle energetics was extended after 1922, as a result of Hill's own work and that of others, to the present day. Abstract figure legend. A. V. Hill's scientific legacy. Vertical from the base. A. V. Hill (pictured) and his colleague Otto Meyerhof shared the 1922 Nobel Prize for Physiology or Medicine. Seven enduring elements of Hill's legacy to muscle physiology are shown. Arrows link concepts and approaches to related disciplines where they have been foundational and highly influential. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- C J Barclay
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - N A Curtin
- Cardio-Respiratory Interface, NHLI, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|