1
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
2
|
Weitzner EL, Fanter CE, Hindle AG. Pinniped Ontogeny as a Window into the Comparative Physiology and Genomics of Hypoxia Tolerance. Integr Comp Biol 2020; 60:1414-1424. [PMID: 32559283 DOI: 10.1093/icb/icaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible. With next-generation sequencing (NGS) tools becoming more widespread and cost-effective, there are new opportunities to explore the diving phenotype. Genomic investigations come with their own challenges, particularly those including cross-species comparisons. Studying the regulatory pathways that underlie diving mammal ontogeny could provide a window into the comparative physiology of hypoxia tolerance. Specifically, in pinnipeds, which shift from terrestrial pups to elite diving adults, there is potential to characterize the transcriptional, epigenetic, and posttranslational differences between contrasting phenotypes while leveraging a common genome. Here we review the current literature detailing the maturation of the diving phenotype in pinnipeds, which has primarily been explored via biomarkers of metabolic capability including antioxidants, muscle fiber typing, and key aerobic and anaerobic metabolic enzymes. We also discuss how NGS tools have been leveraged to study phenotypic shifts within species through ontogeny, and how this approach may be applied to investigate the biochemical and physiological mechanisms that develop as pups become elite diving adults. We conclude with a specific example of the Antarctic Weddell seal by overlapping protein biomarkers with gene regulatory microRNA datasets.
Collapse
Affiliation(s)
- Emma L Weitzner
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Cornelia E Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
3
|
Bautista NM, Crespel A, Crossley J, Padilla P, Burggren W. Parental transgenerational epigenetic inheritance related to dietary crude oil exposure in Danio rerio. J Exp Biol 2020; 223:jeb222224. [PMID: 32620709 DOI: 10.1242/jeb.222224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Transgenerational inheritance from both parental lines can occur by genetic and epigenetic inheritance. Maternal effects substantially influence offspring survival and fitness. However, investigation of the paternal contribution to offspring success has been somewhat neglected. In the present study, adult zebrafish were separated into female and male groups exposed for 21 days to either a control diet or to a diet containing water accommodated fractions of crude oil. Four F1 offspring groups were obtained: (1) control (non-exposed parents), (2) paternally exposed, (3) maternally exposed and (4) dual-parent-exposed. To determine the maternal and paternal influence on their offspring, we evaluated responses from molecular to whole organismal levels in both generations. Growth rate, hypoxia resistance and heart rate did not differ among parental groups. However, global DNA methylation in heart tissue was decreased in oil-exposed fish compared with control parents. This decrease was accompanied by an upregulation of glycine N-methyltransferase. Unexpectedly, maternal, paternal and dual exposure all enhanced survival of F1 offspring raised in oiled conditions. Regardless of parental exposure, however, F1 offspring exposed to oil exhibited bradycardia. Compared with offspring from control parents, global DNA methylation was decreased in the three offspring groups derived from oil-exposed parents. However, no difference between groups was observed in gene regulation involved in methylation transfer, suggesting that the changes observed in the F1 populations may have been inherited from both parental lines. Phenotypic responses during exposure to persistent environmental stressors in F1 offspring appear to be influenced by maternal and paternal exposure, potentially benefitting offspring populations to survive in challenging environments.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Amélie Crespel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Janna Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Pamela Padilla
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
4
|
Hu CK, Wang W, Brind'Amour J, Singh PP, Reeves GA, Lorincz MC, Alvarado AS, Brunet A. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 2020; 367:870-874. [PMID: 32079766 DOI: 10.1126/science.aaw2601] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Diapause is a state of suspended development that helps organisms survive extreme environments. How diapause protects living organisms is largely unknown. Using the African turquoise killifish (Nothobranchius furzeri), we show that diapause preserves complex organisms for extremely long periods of time without trade-offs for subsequent adult growth, fertility, and life span. Transcriptome analyses indicate that diapause is an active state, with dynamic regulation of metabolism and organ development genes. The most up-regulated genes in diapause include Polycomb complex members. The chromatin mark regulated by Polycomb, H3K27me3, is maintained at key developmental genes in diapause, and the Polycomb member CBX7 mediates repression of metabolism and muscle genes in diapause. CBX7 is functionally required for muscle preservation and diapause maintenance. Thus, vertebrate diapause is a state of suspended life that is actively maintained by specific chromatin regulators, and this has implications for long-term organism preservation.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Julie Brind'Amour
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - G Adam Reeves
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Graduate Program of Genetics, Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA. .,Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Reynolds JA, Bautista-Jimenez R, Denlinger DL. Changes in histone acetylation as potential mediators of pupal diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:29-37. [PMID: 27350056 DOI: 10.1016/j.ibmb.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The growing appreciation that epigenetic processes are integral to the responses of many organisms to changes in the environment suggests a possible role for epigenetics in coordination of insect diapause. The results we present suggest that histone modification may be one type of epigenetic process that contributes to regulation of pupal diapause in the flesh fly, Sarcophaga bullata. Reduction in total histone H3 acetylation in diapausing pupae, shifts in mRNA expression profiles of genes encoding histone acetyltransferase (HAT) and histone deacetylase (HDAC) in pre-diapause, diapause and post-diapause flies compared to their nondiapause counterparts, and alterations in HDAC enzyme activity during and post-diapause lend support to the hypothesis that this specific type of histone modification is involved in regulating diapause programming, maintenance, and termination. Transcription of genes encoding HDAC1, HDAC3, HDAC6, and Sirtuin2 were all upregulated in photosensitive first instar larvae programmed to enter pupal diapause, suggesting that histone deacetylation may be linked to the early decision to enter diapause. A 50% reduction in transcription of hdac3 and a corresponding 30% reduction in HDAC activity during diapause suggest that removal of acetyl groups from histones primarily occurs prior to diapause entry and that further histone deacetylation is not necessary to maintain diapause. Transcription of the HDAC genes was quickly elevated when diapause was terminated, followed by an increase in enzyme activity after a short delay. A maternal effect operating in these flies prevents pupal diapause in progeny whose mothers experienced pupal diapause, even if the progeny are reared in strong diapause-inducing short-day conditions. Such nondiapausing pupae had HDAC transcription profiles nearly identical to the profiles seen in nondiapausing pupae generated under a long-day photoperiod. Together, these results provide consistent evidence for histone acetylation and deacetylation as regulators of this insect's developmental trajectory.
Collapse
Affiliation(s)
- J A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Robin Bautista-Jimenez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - D L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|