1
|
Amorim MCP. The role of acoustic signals in fish reproductiona). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2959-2973. [PMID: 37947394 DOI: 10.1121/10.0022353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This paper outlines my research path over three decades while providing a review on the role of fish sounds in mate choice and reproduction. It also intends to provide advice to young scientists and point toward future avenues in this field of research. An overview of studies on different fish model species shows that male mating acoustic signals can inform females and male competitors about their size (dominant frequency, amplitude, and sound pulse rate modulation), body condition (calling activity and sound pulse rate), and readiness to mate (calling rate, number of pulses in a sound). At least in species with parental care, such as toadfishes, gobies, and pomacentrids, calling activity seems to be the main driver of reproductive success. Playback experiments ran on a restricted number of species consistently revealed that females prefer vocal to silent males and select for higher calling rates. This personal synthesis concludes with the suggestion to increase knowledge on fish mating signals, especially considering the emerging use of fish sounds to monitor aquatic environments due to increasing threats, like noise pollution.
Collapse
Affiliation(s)
- M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and MARE-Marine and Environmental Sciences Centre, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Aniceto AS, Ferguson EL, Pedersen G, Tarroux A, Primicerio R. Temporal patterns in the soundscape of a Norwegian gateway to the Arctic. Sci Rep 2022; 12:7655. [PMID: 35538135 PMCID: PMC9090731 DOI: 10.1038/s41598-022-11183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
As an Arctic gateway, the Norwegian Sea sustains a rich diversity of seasonal and resident species of soniferous animals, vulnerable to the effects of climate change and anthropogenic activities. We show the occurrence of seasonal patterns of acoustic signals in a small canyon off Northern Norway, and investigate cetacean vocal behavior, human-made noise, and climatic contributions to underwater sound between January and May 2018. Mostly median sound levels ranged between 68.3 and 96.31 dB re 1 μPa2 across 1/3 octave bands (13 Hz-16 kHz), with peaks in February and March. Frequencies under 2 kHz were dominated by sounds from baleen whales with highest rates of occurrence during winter and early spring. During late-spring non-biological sounds were predominant at higher frequencies that were linked mainly to ship traffic. Seismic pulses were also recorded during spring. We observed a significant effect of wind speed and ship sailing time on received sound levels across multiple distance ranges. Our results provide a new assessment of high-latitude continental soundscapes in the East Atlantic Ocean, useful for management strategies in areas where anthropogenic pressure is increasing. Based on the current status of the local soundscape, we propose considerations for acoustic monitoring to be included in future management plans.
Collapse
Affiliation(s)
- A S Aniceto
- Department of Fisheries and Bioeconomics, Arctic University of Norway, Tromsø, Norway.
| | | | - G Pedersen
- Department of Marine Ecosystem Acoustics, Institute of Marine Research, 1870, Bergen, Norway
| | - A Tarroux
- Fram Centre - High North Research Centre for Climate and Environment, Norwegian Institute for Nature Research, 9296, Tromsø, Norway
| | - R Primicerio
- Department of Fisheries and Bioeconomics, Arctic University of Norway, Tromsø, Norway
- Fram Centre - High North Research Centre for Climate and Environment, Institute of Marine Research, 9296, Tromsø, Norway
| |
Collapse
|
3
|
Parsons MJG, Lin TH, Mooney TA, Erbe C, Juanes F, Lammers M, Li S, Linke S, Looby A, Nedelec SL, Van Opzeeland I, Radford C, Rice AN, Sayigh L, Stanley J, Urban E, Di Iorio L. Sounding the Call for a Global Library of Underwater Biological Sounds. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.810156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.
Collapse
|
4
|
Vieira M, Amorim MCP, Fonseca PJ. Vocal rhythms in nesting Lusitanian toadfish, Halobatrachus didactylus. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Alves D, Vieira M, Amorim MCP, Fonseca PJ. Boat noise interferes with Lusitanian toadfish acoustic communication. J Exp Biol 2021; 224:269006. [PMID: 34102670 DOI: 10.1242/jeb.234849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Anthropogenic noise is considered a major underwater pollutant as increasing ocean background noise due to human activities is impacting aquatic organisms. One of the most prevalent anthropogenic sounds is boat noise. Although motorboat traffic has increased in the past few decades, its impact on the communication of fish is still poorly known. The highly vocal Lusitanian toadfish (Halobatrachus didactylus) is an excellent model to test the impact of this anthropogenic stressor as it relies on acoustic communication to attract mates. Here, we performed two experiments to test the impact of boat noise on the acoustic communication of the Lusitanian toadfish. Using the auditory evoked potential (AEP) technique, we first compared the maximum distance a fish can perceive a boatwhistle (BW), the mate attraction acoustic signal, before and after embedding it in boat noise. Noises from a small motorboat and from a ferryboat reduced the active space from a control value of 6.4-10.4 m to 2.0-2.5 m and 6.3-6.7 m, respectively. In the second experiment we monitored the acoustic behaviour of breeding males exposed to boat noise playbacks and we observed an increase in the inter-onset interval of BWs and a disruption of the usual vocal interactions between singing males. These results demonstrate that boat noise can severely reduce the acoustic active space and affect the chorusing behaviour in this species, which may have consequences in breeding success for individuals and could thus affect fitness.
Collapse
Affiliation(s)
- Daniel Alves
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Bloco C2. Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
|
7
|
Spiny lobster sounds can be detectable over kilometres underwater. Sci Rep 2020; 10:7943. [PMID: 32439882 PMCID: PMC7242360 DOI: 10.1038/s41598-020-64830-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022] Open
Abstract
The detection ranges of broadband sounds produced by marine invertebrates are not known. To address this deficiency, a linear array of hydrophones was built in a shallow water area to experimentally investigate the propagation features of the sounds from various sizes of European spiny lobsters (Palinurus elephas), recorded between 0.5 and 100 m from the animals. The peak-to-peak source levels (SL, measured at one meter from the animals) varied significantly with body size, the largest spiny lobsters producing SL up to 167 dB re 1 µPa2. The sound propagation and its attenuation with the distance were quantified using the array. This permitted estimation of the detection ranges of spiny lobster sounds. Under the high ambient noise conditions recorded in this study, the sounds propagated between 5 and 410 m for the smallest and largest spiny lobsters, respectively. Considering lower ambient noise levels and different realistic propagation conditions, spiny lobster sounds can be detectable up to several kilometres away from the animals, with sounds from the largest individuals propagating over 3 km. Our results demonstrate that sounds produced by P. elephas can be utilized in passive acoustic programs to monitor and survey this vulnerable species at kilometre scale in coastal waters.
Collapse
|
8
|
Amorim MCP, Fonseca PJ, Mathevon N, Beauchaud M. Assessment of fighting ability in the vocal cichlid Metriaclima zebra in face of incongruent audiovisual information. Biol Open 2019; 8:8/12/bio043356. [PMID: 31852657 PMCID: PMC6955207 DOI: 10.1242/bio.043356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Information transfer between individuals typically depends on multiple sensory channels. Yet, how multi-sensory inputs shape adaptive behavioural decisions remains largely unexplored. We tested the relative importance of audio and visual sensory modalities in opponent size assessment in the vocal cichlid fish, Metriaclima zebra, by playing back mismatched agonistic sounds mimicking larger or smaller opponents during fights of size-matched males. Trials consisted in three 5-min periods: PRE (visual), PBK (acoustic+visual) and POST (visual). During PBK agonistic sounds of smaller (high frequency or low amplitude) or larger (low frequency or high amplitude) males were played back interactively. As a control, we used white noise and silence. We show that sound frequency but not amplitude affects aggression, indicating that spectral cues reliably signal fighting ability. In addition, males reacted to the contrasting audio-visual information by giving prevalence to the sensory channel signalling a larger opponent. Our results suggest that fish can compare the relevance of information provided by different sensory inputs to make behavioural decisions during fights, which ultimately contributes to their individual fitness. These findings have implications for our understanding of the role of multi-sensory inputs in shaping behavioural output during conflicts in vertebrates. Summary: Cichlid fish rely on the sensory channel indicating higher risk when facing incongruent visual and acoustic information during opponent assessment.
Collapse
Affiliation(s)
- M Clara P Amorim
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nicolas Mathevon
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S 1028, 42023 Saint-Etienne, France
| | - Marilyn Beauchaud
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S 1028, 42023 Saint-Etienne, France
| |
Collapse
|
9
|
Carriço R, Silva MA, Menezes GM, Fonseca PJ, Amorim MCP. Characterization of the acoustic community of vocal fishes in the Azores. PeerJ 2019; 7:e7772. [PMID: 31720098 PMCID: PMC6836754 DOI: 10.7717/peerj.7772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022] Open
Abstract
Sounds produced by teleost fishes are an important component of marine soundscapes, making passive acoustic monitoring (PAM) an effective way to map the presence of vocal fishes with a minimal impact on ecosystems. Based on a literature review, we list the known soniferous fish species occurring in Azorean waters and compile their sounds. We also describe new fish sounds recorded in Azores seamounts. From the literature, we identified 20 vocal fish species present in Azores. We analysed long-term acoustic recordings carried out since 2008 in Condor and Princesa Alice seamounts and describe 20 new putative fish sound sequences. Although we propose candidates as the source of some vocalizations, this study puts into evidence the myriad of fish sounds lacking species identification. In addition to identifying new sound sequences, we provide the first marine fish sound library for Azores. Our acoustic library will allow to monitor soniferous fish species for conservation and management purposes.
Collapse
Affiliation(s)
- Rita Carriço
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Mónica A. Silva
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole Oceanographic Institution, Barnstable County, MA, United States of America
| | - Gui M. Menezes
- Okeanos-UAc R&D Center, University of the Azores, Horta, Portugal; MARE - Marine and Environmental Sciences Centre and IMAR - Institute of Marine Research, Horta, Açores, Portugal
| | - Paulo J. Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Clara P. Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Ladich F. Ecology of sound communication in fishes. FISH AND FISHERIES (OXFORD, ENGLAND) 2019; 20:552-563. [PMID: 31130820 PMCID: PMC6519373 DOI: 10.1111/faf.12368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
Fishes communicate acoustically under ecological constraints which may modify or hinder signal transmission and detection and may also be risky. This makes it important to know if and to what degree fishes can modify acoustic signalling when key ecological factors-predation pressure, noise and ambient temperature-vary. This paper reviews short-time effects of the first two factors; the third has been reviewed recently (Ladich, 2018). Numerous studies have investigated the effects of predators on fish behaviour, but only a few report changes in calling activity when hearing predator calls as demonstrated when fish responded to played-back dolphin sounds. Furthermore, swimming sounds of schooling fish may affect predators. Our knowledge on adaptations to natural changes in ambient noise, for example caused by wind or migration between quiet and noisier habitats, is limited. Hearing abilities decrease when ambient noise levels increase (termed masking), in particular in taxa possessing enhanced hearing abilities. High natural and anthropogenic noise regimes, for example vessel noise, alter calling activity in the field and laboratory. Increases in sound pressure levels (Lombard effect) and altered temporal call patterns were also observed, but no switches to higher sound frequencies. In summary, effects of predator calls and noise on sound communication are described in fishes, yet sparsely in contrast to songbirds or whales. Major gaps in our knowledge on potential negative effects of noise on acoustic communication call for more detailed investigation because fishes are keystone species in many aquatic habitats and constitute a major source of protein for humans.
Collapse
Affiliation(s)
- Friedrich Ladich
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
11
|
Amorim MCP, Vasconcelos RO, Bolgan M, Pedroso SS, Fonseca PJ. Acoustic communication in marine shallow waters: testing the acoustic adaptive hypothesis in sand gobies. ACTA ACUST UNITED AC 2018; 221:jeb.183681. [PMID: 30171096 DOI: 10.1242/jeb.183681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 01/31/2023]
Abstract
Acoustic communication is an important part of social behaviour of fish species that live or breed in shallow noisy waters. Previous studies have shown that some fish species exploit a quiet window in the background noise for communication. However, it remains to be examined whether hearing abilities and sound production of fish are adapted to marine habitats presenting high hydrodynamism. Here, we investigated whether the communication system of the painted (Pomatoschistus pictus) and the marbled (Pomatoschistus marmoratus) gobies is adapted to enhance sound transmission and reception in Atlantic shallow water environments. We recorded and measured the sound pressure levels of social vocalisations of both species, as well as snapshots of ambient noise of habitats characterised by different hydrodynamics. Hearing thresholds (in terms of both sound pressure and particle acceleration) and responses to conspecific signals were determined using the auditory evoked potential recording technique. We found that the peak frequency range (100-300 Hz) of acoustic signals matched the best hearing sensitivity in both species and appeared well adapted for short-range communication in Atlantic habitats. Sandy/rocky exposed beaches presented a quiet window, observable even during the breaking of moderate waves, coincident with the main sound frequencies and best hearing sensitivities of both species. Our data demonstrate that the hearing abilities of these gobies are well suited to detect conspecific sounds within typical interacting distances (a few body lengths) in Atlantic shallow waters. These findings lend support to the acoustic adaptive hypothesis, under the sensory drive framework, proposing that signals and perception systems coevolve to be effective within local environment constraints.
Collapse
Affiliation(s)
- Maria Clara P Amorim
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao SAR, China
| | - Marta Bolgan
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie - B6C, Université de Liège, 4000 Liège, Belgium
| | - Silvia S Pedroso
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal.,Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
12
|
Putland R, Mackiewicz A, Mensinger A. Localizing individual soniferous fish using passive acoustic monitoring. ECOL INFORM 2018. [DOI: 10.1016/j.ecoinf.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
de Jong K, Amorim MCP, Fonseca PJ, Heubel KU. Noise Affects Multimodal Communication During Courtship in a Marine Fish. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
de Jong K, Amorim MCP, Fonseca PJ, Fox CJ, Heubel KU. Noise can affect acoustic communication and subsequent spawning success in fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:814-823. [PMID: 29146199 DOI: 10.1016/j.envpol.2017.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness.
Collapse
Affiliation(s)
- Karen de Jong
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, D- 72076 Tübingen, Germany; Ecological Research Station Rees, Institute for Zoology, University of Cologne, Grietherbusch 3a, D-46459 Rees, Germany.
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisbon, Portugal.
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Clive J Fox
- Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban PA37 1QS Scotland, UK.
| | - Katja U Heubel
- Ecological Research Station Rees, Institute for Zoology, University of Cologne, Grietherbusch 3a, D-46459 Rees, Germany.
| |
Collapse
|