1
|
Oliva D, Gültig M, Cámera A, Tomsic D. Freezing of movements and its correspondence with MLG1 neuron response to looming stimuli in the crab Neohelice. J Exp Biol 2024; 227:jeb248124. [PMID: 39422138 DOI: 10.1242/jeb.248124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Upon visually detecting a moving predator, animals often freeze, i.e. stop moving, to minimize being uncovered and to gather detailed information of the object's movements and properties. In certain conditions, the freezing behavior can be enough to avoid a predatory menace but, when the risk is high or increases to a higher level, animals switch strategy and engage in an escape response. The neural bases underlying escape responses to visual stimuli have been extensively investigated both in vertebrates and arthropods. However, those involved in freezing behaviors are much less studied. Here, we investigated the freezing behavior displayed by the crab Neohelice granulata when confronted with a variety of looming stimuli simulating objects of distinct sizes approaching on a collision course at different speeds. The experiments were performed in a treadmill-like device. Animals engaged in exploratory walks responded to the looming stimulus with freezing followed by escaping. The analysis of the stimulus optical variables shows that regardless of the looming dynamic, the freezing decision is made when the angular size of the object increases by 1.4 deg. In vivo intracellular recording responses of monostratified lobula giant neurons (MLG1) to the same looming stimuli show that the freezing times correlate with the times predicted by a hypothetical spike counter of this neuron.
Collapse
Affiliation(s)
- Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Conicet, B1876BXD Buenos Aires, Argentina
| | - Matias Gültig
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), C1428EHA Buenos Aires, Argentina
| | - Alejandro Cámera
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), C1428EHA Buenos Aires, Argentina
| | - Daniel Tomsic
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellón 2 Ciudad Universitaria (1428), C1428EHA Buenos Aires, Argentina
| |
Collapse
|
2
|
Abstract
South America is a vast continent endowed with extraordinary biodiversity that offers abundant opportunities for neuroethological research. Although neuroethology is still emerging in the region, the number of research groups studying South American species to unveil the neural organization of natural behaviors has grown considerably during the last decade. In this Perspective, we provide an account of the roots and strategies that led to the present state of neuroethology in the Southern Cone of America, with a forward-looking vision of its role in education and its international recognition. Hopefully, our Perspective will serve to further promote the study of natural behaviors across South America, as well as in other scarcely explored regions of the world.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular. CONICET, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Ana C Silva
- Universidad de la República, Facultad de Ciencias, Laboratorio de Neurociencias, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Bagheri ZM, Donohue CG, Partridge JC, Hemmi JM. Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance. Sci Rep 2022; 12:10022. [PMID: 35705656 PMCID: PMC9200765 DOI: 10.1038/s41598-022-14113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Selective attention, the ability to focus on a specific stimulus and suppress distractions, plays a fundamental role for animals in many contexts, such as mating, feeding, and predation. Within natural environments, animals are often confronted with multiple stimuli of potential importance. Such a situation significantly complicates the decision-making process and imposes conflicting information on neural systems. In the context of predation, selectively attending to one of multiple threats is one possible solution. However, how animals make such escape decisions is rarely studied. A previous field study on the fiddler crab, Gelasimus dampieri, provided evidence of selective attention in the context of escape decisions. To identify the underlying mechanisms that guide their escape decisions, we measured the crabs' behavioural and neural responses to either a single, or two simultaneously approaching looming stimuli. The two stimuli were either identical or differed in contrast to represent different levels of threat certainty. Although our behavioural data provides some evidence that crabs perceive signals from both stimuli, we show that both the crabs and their looming-sensitive neurons almost exclusively respond to only one of two simultaneous threats. The crabs' body orientation played an important role in their decision about which stimulus to run away from. When faced with two stimuli of differing contrasts, both neurons and crabs were much more likely to respond to the stimulus with the higher contrast. Our data provides evidence that the crabs' looming-sensitive neurons play an important part in the mechanism that drives their selective attention in the context of predation. Our results support previous suggestions that the crabs' escape direction is calculated downstream of their looming-sensitive neurons by means of a population vector of the looming sensitive neuronal ensemble.
Collapse
Affiliation(s)
- Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| | - Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.,Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Julian C Partridge
- The UWA Oceans Institute, The University of Western Australia, Perth, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
4
|
Luan H, Fu Q, Zhang Y, Hua M, Chen S, Yue S. A Looming Spatial Localization Neural Network Inspired by MLG1 Neurons in the Crab Neohelice. Front Neurosci 2022; 15:787256. [PMID: 35126038 PMCID: PMC8814358 DOI: 10.3389/fnins.2021.787256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to most visual animals, the crab Neohelice granulata relies predominantly on visual information to escape from predators, to track prey and for selecting mates. It, therefore, needs specialized neurons to process visual information and determine the spatial location of looming objects. In the crab Neohelice granulata, the Monostratified Lobula Giant type1 (MLG1) neurons have been found to manifest looming sensitivity with finely tuned capabilities of encoding spatial location information. MLG1s neuronal ensemble can not only perceive the location of a looming stimulus, but are also thought to be able to influence the direction of movement continuously, for example, escaping from a threatening, looming target in relation to its position. Such specific characteristics make the MLG1s unique compared to normal looming detection neurons in invertebrates which can not localize spatial looming. Modeling the MLG1s ensemble is not only critical for elucidating the mechanisms underlying the functionality of such neural circuits, but also important for developing new autonomous, efficient, directionally reactive collision avoidance systems for robots and vehicles. However, little computational modeling has been done for implementing looming spatial localization analogous to the specific functionality of MLG1s ensemble. To bridge this gap, we propose a model of MLG1s and their pre-synaptic visual neural network to detect the spatial location of looming objects. The model consists of 16 homogeneous sectors arranged in a circular field inspired by the natural arrangement of 16 MLG1s' receptive fields to encode and convey spatial information concerning looming objects with dynamic expanding edges in different locations of the visual field. Responses of the proposed model to systematic real-world visual stimuli match many of the biological characteristics of MLG1 neurons. The systematic experiments demonstrate that our proposed MLG1s model works effectively and robustly to perceive and localize looming information, which could be a promising candidate for intelligent machines interacting within dynamic environments free of collision. This study also sheds light upon a new type of neuromorphic visual sensor strategy that can extract looming objects with locational information in a quick and reliable manner.
Collapse
Affiliation(s)
- Hao Luan
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Qinbing Fu
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- Computational Intelligence Laboratory (CIL), School of Computer Science, University of Lincoln, Lincoln, United Kingdom
| | - Yicheng Zhang
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Mu Hua
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Shengyong Chen
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- Computational Intelligence Laboratory (CIL), School of Computer Science, University of Lincoln, Lincoln, United Kingdom
- *Correspondence: Shigang Yue
| |
Collapse
|
5
|
Cámera A, Belluscio MA, Tomsic D. Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior. Front Behav Neurosci 2020; 14:592309. [PMID: 33240056 PMCID: PMC7680727 DOI: 10.3389/fnbeh.2020.592309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
A major challenge in current neuroscience is to understand the concerted functioning of distinct neurons involved in a particular behavior. This goal first requires achieving an adequate characterization of the behavior as well as an identification of the key neuronal elements associated with that action. Such conditions have been considerably attained for the escape response to visual stimuli in the crab Neohelice. During the last two decades a combination of in vivo intracellular recordings and staining with behavioral experiments and modeling, led us to postulate that a microcircuit formed by four classes of identified lobula giant (LG) neurons operates as a decision-making node for several important visually-guided components of the crab's escape behavior. However, these studies were done by recording LG neurons individually. To investigate the combined operations performed by the group of LG neurons, we began to use multielectrode recordings. Here we describe the methodology and show results of simultaneously recorded activity from different lobula elements. The different LG classes can be distinguished by their differential responses to particular visual stimuli. By comparing the response profiles of extracellular recorded units with intracellular recorded responses to the same stimuli, two of the four LG classes could be faithfully recognized. Additionally, we recorded units with stimulus preferences different from those exhibited by the LG neurons. Among these, we found units sensitive to optic flow with marked directional preference. Units classified within a single group according to their response profiles exhibited similar spike waveforms and similar auto-correlograms, but which, on the other hand, differed from those of groups with different response profiles. Additionally, cross-correlograms revealed excitatory as well as inhibitory relationships between recognizable units. Thus, the extracellular multielectrode methodology allowed us to stably record from previously identified neurons as well as from undescribed elements of the brain of the crab. Moreover, simultaneous multiunit recording allowed beginning to disclose the connections between central elements of the visual circuits. This work provides an entry point into studying the neural networks underlying the control of visually guided behaviors in the crab brain.
Collapse
Affiliation(s)
- Alejandro Cámera
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina
| | - Mariano Andres Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina.,Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Gancedo B, Salido C, Tomsic D. Visual determinants of prey chasing behavior in a mudflat crab. J Exp Biol 2020; 223:jeb217299. [PMID: 32098883 DOI: 10.1242/jeb.217299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The crab Neohelice granulata inhabits mudflats where it is preyed upon by gulls and, conversely, preys on smaller crabs. Therefore, on seeing moving stimuli, this crab can behave as prey or predator. The crab escape response to visual stimuli has been extensively investigated from the behavioral to the neuronal level. The predatory response (PR), however, has not yet been explored. Here, we show that this response can be reliably elicited and investigated in a laboratory arena. By using dummies of three different sizes moved on the ground at three different velocities over multiple trials, we identified important stimulation conditions that boost the occurrence of PR and its chances of ending in successful prey capture. PR probability was sustained during the first 10 trials of our experiments but then declined. PR was elicited with high probability by the medium size dummy, less effectively by the small dummy, and hardly brought about by the large dummy, which mostly elicited avoidance responses. A GLMM analysis indicated that the dummy size and the tracking line distance were two strong determinants for eliciting PR. The rate of successful captures, however, mainly depended on the dummy velocity. Our results suggest that crabs are capable of assessing the distance to the dummy and its absolute size. The PR characterized here, in connection with the substantial knowledge of the visual processing associated with the escape response, provides excellent opportunities for comparative analyses of the organization of two distinct visually guided behaviors in a single animal.
Collapse
Affiliation(s)
- Brian Gancedo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Carla Salido
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
7
|
Binocular Neuronal Processing of Object Motion in an Arthropod. J Neurosci 2018; 38:6933-6948. [PMID: 30012687 DOI: 10.1523/jneurosci.3641-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
Animals use binocular information to guide many behaviors. In highly visual arthropods, complex binocular computations involved in processing panoramic optic flow generated during self-motion occur in the optic neuropils. However, the extent to which binocular processing of object motion occurs in these neuropils remains unknown. We investigated this in a crab, where the distance between the eyes and the extensive overlapping of their visual fields advocate for the use of binocular processing. By performing in vivo intracellular recordings from the lobula (third optic neuropil) of male crabs, we assessed responses of object-motion-sensitive neurons to ipsilateral or contralateral moving objects under binocular and monocular conditions. Most recorded neurons responded to stimuli seen independently with either eye, proving that each lobula receives profuse visual information from both eyes. The contribution of each eye to the binocular response varies among neurons, from those receiving comparable inputs from both eyes to those with mainly ipsilateral or contralateral components, some including contralateral inhibition. Electrophysiological profiles indicated that a similar number of neurons were recorded from their input or their output side. In monocular conditions, the first group showed shorter response delays to ipsilateral than to contralateral stimulation, whereas the second group showed the opposite. These results fit well with neurons conveying centripetal and centrifugal information from and toward the lobula, respectively. Intracellular and massive stainings provided anatomical support for this and for direct connections between the two lobulae, but simultaneous recordings failed to reveal such connections. Simplified model circuits of interocular connections are discussed.SIGNIFICANCE STATEMENT Most active animals became equipped with two eyes, which contributes to functions like depth perception, objects spatial location, and motion processing, all used for guiding behaviors. In visually active arthropods, binocular neural processing of the panoramic optic flow generated during self-motion happens already in the optic neuropils. However, whether binocular processing of single-object motion occurs in these neuropils remained unknown. We investigated this in a crab, where motion-sensitive neurons from the lobula can be recorded in the intact animal. Here we demonstrate that different classes of neurons from the lobula compute binocular information. Our results provide new insight into where and how the visual information acquired by the two eyes is first combined in the brain of an arthropod.
Collapse
|
8
|
Characterization and modelling of looming-sensitive neurons in the crab Neohelice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:487-503. [PMID: 29574596 DOI: 10.1007/s00359-018-1257-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Looming-sensitive neurons (LSNs) are motion-sensitive neurons tuned for detecting imminent collision. Their main characteristic is the selectivity to looming (a 2D representation of an object approach), rather than to receding stimuli. We studied a set of LSNs by performing surface extracellular recordings in the optic nerve of Neohelice granulata crabs, and characterized their response against computer-generated visual stimuli with different combinations of moving edges, highlighting different components of the optical flow. In addition to their selectivity to looming stimuli, we characterized other properties of these neurons, such as low directionality; reduced response to sustained excitement; and an inhibition phenomenon in response to visual stimuli with dense optical flow of expansion, contraction, and translation. To analyze the spatio-temporal processing of these LSNs, we proposed a biologically plausible computational model which was inspired by previous computational models of the locust lobula giant motion detector (LGMD) neuron. The videos seen by the animal during electrophysiological experiments were applied as an input to the model which produced a satisfactory fit to the measured responses, suggesting that the computation performed by LSNs in a decapod crustacean appears to be based on similar physiological processing previously described for the LGMD in insects.
Collapse
|
9
|
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E. The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 2017; 220:2318-2327. [DOI: 10.1242/jeb.143222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge – acquired through both laboratory and field studies – on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, CONICET, Argentina
| | - Estela Lanza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|