1
|
Goh G, Vesterdorf K, Fuller A, Blache D, Maloney SK. Optimal sampling interval for characterisation of the circadian rhythm of body temperature in homeothermic animals using periodogram and cosinor analysis. Ecol Evol 2024; 14:e11243. [PMID: 38601852 PMCID: PMC11004550 DOI: 10.1002/ece3.11243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Core body temperature (T c) is a critical aspect of homeostasis in birds and mammals and is increasingly used as a biomarker of the fitness of an animal to its environment. Periodogram and cosinor analysis can be used to estimate the characteristics of the circadian rhythm of T c from data obtained on loggers that have limited memory capacity and battery life. The sampling interval can be manipulated to maximise the recording period, but the impact of sampling interval on the output of periodogram or cosinor analysis is unknown. Some basic guidelines are available from signal analysis theory, but those guidelines have never been tested on T c data. We obtained data at 1-, 5- or 10-min intervals from nine avian or mammalian species, and re-sampled those data to simulate logging at up to 240-min intervals. The period of the rhythm was first analysed using the Lomb-Scargle periodogram, and the mesor, amplitude, acrophase and adjusted coefficient of determination (R 2) from the original and the re-sampled data were obtained using cosinor analysis. Sampling intervals longer than 60 min did not affect the average mesor, amplitude, acrophase or adjusted R 2, but did impact the estimation of the period of the rhythm. In most species, the period was not detectable when intervals longer than 120 min were used. In all individual profiles, a 30-min sampling interval modified the values of the mesor and amplitude by less than 0.1°C, and the adjusted R 2 by less than 0.1. At a 30-min interval, the acrophase was accurate to within 15 min for all species except mice. The adjusted R 2 increased as sampling frequency decreased. In most cases, a 30-min sampling interval provides a reliable estimate of the circadian T c rhythm using periodogram and cosinor analysis. Our findings will help biologists to select sampling intervals to fit their research goals.
Collapse
Affiliation(s)
- Grace Goh
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Kristine Vesterdorf
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Dominique Blache
- School of Agriculture and EnvironmentThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Shane K. Maloney
- School of Human SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Brain Function Research Group, School of Physiology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
2
|
Johnson DL, Henderson MT, Anderson DL, Booms TL, Williams CT. Isotopic niche partitioning and individual specialization in an Arctic raptor guild. Oecologia 2022; 198:1073-1084. [DOI: 10.1007/s00442-022-05154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
3
|
Flôres DEFL, Jannetti MG, Improta GC, Tachinardi P, Valentinuzzi VS, Oda GA. Telling the Seasons Underground: The Circadian Clock and Ambient Temperature Shape Light Exposure and Photoperiodism in a Subterranean Rodent. Front Physiol 2021; 12:738471. [PMID: 34658922 PMCID: PMC8517108 DOI: 10.3389/fphys.2021.738471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Living organisms anticipate the seasons by tracking the proportion of light and darkness hours within a day—photoperiod. The limits of photoperiod measurement can be investigated in the subterranean rodents tuco-tucos (Ctenomys aff. knighti), which inhabit dark underground tunnels. Their exposure to light is sporadic and, remarkably, results from their own behavior of surface emergence. Thus, we investigated the endogenous and exogenous regulation of this behavior and its consequences to photoperiod measurement. In the field, animals carrying biologgers displayed seasonal patterns of daily surface emergence, exogenously modulated by temperature. In the laboratory, experiments with constant lighting conditions revealed the endogenous regulation of seasonal activity by the circadian clock, which has a multi-oscillatory structure. Finally, mathematical modeling corroborated that tuco-tuco’s light exposure across the seasons is sufficient for photoperiod encoding. Together, our results elucidate the interrelationship between the circadian clock and temperature in shaping seasonal light exposure patterns that convey photoperiod information in an extreme photic environment.
Collapse
Affiliation(s)
- Danilo E F L Flôres
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Milene G Jannetti
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Giovane C Improta
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Tachinardi
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Veronica S Valentinuzzi
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Centro Regional de Investigaciones Cientificas y de Transferencia Tecnológica (CRILAR), Anillaco, Argentina
| | - Gisele A Oda
- Laboratorio de Cronobiologia Binacional Argentina-Brasil, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Eichhorn G, Boom MP, van der Jeugd HP, Mulder A, Wikelski M, Maloney SK, Goh GH. Circadian and Seasonal Patterns of Body Temperature in Arctic Migratory and Temperate Non-migratory Geese. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.699917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arctic migration presents unique challenges to circadian physiology. In addition to the metabolic cost of maintaining a relatively high body temperature (Tb) above ambient temperature, migratory birds are also exposed to rapidly changing light conditions as they transition between light-dark cycles and a 24-hour polar day. A previous study suggested that Arctic-migratory barnacle geese (Branta leucopsis) may utilise adaptive heterothermy (i.e., a controlled decrease in core Tb) during and around the autumn migratory period in order to minimise the metabolic cost of migration, but the impact of seasonally changing daylight conditions on other parameters of the circadian profile of Tb in these geese remained obscure. Here, we provide a detailed comparative analysis on the circadian rhythm of Tb and its seasonal development in free-living barnacle geese from three study populations that differ in their migratory behaviour and in the environments they occupy. We recorded abdominal Tb in non-migratory geese from a temperate breeding colony in Netherlands and in migratory geese from a colony in the Russian low Arctic, and analysed these data together with previously published Tb data on geese from a migratory colony in the high Arctic of Svalbard. We found that the circadian Tb profile in the barnacle goose was well aligned with the daily and seasonally changing daylight conditions. In the migratory populations, a fast re-entrainment of the rhythm and its phase was observed when zeitgeber conditions changed during migratory movements. The circadian rhythmicity of Tb was lost once the geese encountered permanent daylight at their northern staging and breeding sites. Circadian Tb rhythmicity was re-established when the period of permanent daylight ended, at rates corresponding to rates of seasonal changes in daylength in the high and low Arctic. Although our data corroborated findings of a decrease in daily mean Tb before autumn migration in both migratory populations in this study, the pre-migratory decrease in Tb was less drastic than previously reported. Moreover, in contrast to previous study, the decrease in Tb stopped at the onset of migration. Overall, our data reveal no evidence that heterothermy in the barnacle goose is functionally linked to migration.
Collapse
|
5
|
van Beest FM, Beumer LT, Chimienti M, Desforges JP, Huffeldt NP, Pedersen SH, Schmidt NM. Environmental conditions alter behavioural organization and rhythmicity of a large Arctic ruminant across the annual cycle. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201614. [PMID: 33204486 PMCID: PMC7657931 DOI: 10.1098/rsos.201614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The existence and persistence of rhythmicity in animal activity during phases of environmental change is of interest in ecology, evolution and chronobiology. A wide diversity of biological rhythms in response to exogenous conditions and internal stimuli have been uncovered, especially for polar vertebrates. However, empirical data supporting circadian organization in behaviour of large ruminating herbivores remains inconclusive. Using year-round tracking data of the largest Arctic ruminant, the muskox (Ovibos moschatus), we modelled rhythmicity as a function of behaviour and environmental conditions. Behavioural states were classified based on patterns in hourly movements, and incorporated within a periodicity analyses framework. Although circadian rhythmicity in muskox behaviour was detected throughout the year, ultradian rhythmicity was most prevalent, especially when muskoxen were foraging and resting in mid-winter (continuous darkness). However, when combining circadian and ultradian rhythmicity together, the probability of behavioural rhythmicity declined with increasing photoperiod until largely disrupted in mid-summer (continuous light). Individuals that remained behaviourally rhythmic during mid-summer foraged in areas with lower plant productivity (NDVI) than individuals with arrhythmic behaviour. Based on our study, we conclude that muskoxen may use an interval timer to schedule their behavioural cycles when forage resources are low, but that the importance and duration of this timer are reduced once environmental conditions allow energetic reserves to be replenished ad libitum. We argue that alimentary function and metabolic requirements are critical determinants of biological rhythmicity in muskoxen, which probably applies to ruminating herbivores in general.
Collapse
Affiliation(s)
- Floris M. van Beest
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Larissa T. Beumer
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Marianna Chimienti
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jean-Pierre Desforges
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Natural Resource Sciences, McGill University, Ste Anne de Bellevue, QuebecCanada, H9X 3V9
| | - Nicholas Per Huffeldt
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Greenland Institute of Natural Resources, 3900 Nuuk, Greenland
| | - Stine Højlund Pedersen
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Niels Martin Schmidt
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Refinetti R. Unimodal daily distribution of activity in antelope ground squirrels under stable environmental conditions. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020; 7:321-362. [PMID: 33251281 PMCID: PMC7678948 DOI: 10.1080/23328940.2020.1743605] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
This article reviews the literature on the circadian rhythms of body temperature and whole-organism metabolism. The two rhythms are first described separately, each description preceded by a review of research methods. Both rhythms are generated endogenously but can be affected by exogenous factors. The relationship between the two rhythms is discussed next. In endothermic animals, modulation of metabolic activity can affect body temperature, but the rhythm of body temperature is not a mere side effect of the rhythm of metabolic thermogenesis associated with general activity. The circadian system modulates metabolic heat production to generate the body temperature rhythm, which challenges homeothermy but does not abolish it. Individual cells do not regulate their own temperature, but the relationship between circadian rhythms and metabolism at the cellular level is also discussed. Metabolism is both an output of and an input to the circadian clock, meaning that circadian rhythmicity and metabolism are intertwined in the cell.
Collapse
Affiliation(s)
- Roberto Refinetti
- Department of Psychology, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
8
|
Ware JV, Rode KD, Robbins CT, Leise T, Weil CR, Jansen HT. The Clock Keeps Ticking: Circadian Rhythms of Free-Ranging Polar Bears. J Biol Rhythms 2020; 35:180-194. [DOI: 10.1177/0748730419900877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Life in the Arctic presents organisms with multiple challenges, including extreme photic conditions, cold temperatures, and annual loss and daily movement of sea ice. Polar bears ( Ursus maritimus) evolved under these unique conditions, where they rely on ice to hunt their main prey, seals. However, very little is known about the dynamics of their daily and seasonal activity patterns. For many organisms, activity is synchronized (entrained) to the earth’s day/night cycle, in part via an endogenous (circadian) timekeeping mechanism. The present study used collar-mounted accelerometer and global positioning system data from 122 female polar bears in the Chukchi and Southern Beaufort Seas collected over an 8-year period to characterize activity patterns over the calendar year and to determine if circadian rhythms are expressed under the constant conditions found in the Arctic. We reveal that the majority of polar bears (80%) exhibited rhythmic activity for the duration of their recordings. Collectively within the rhythmic bear cohort, circadian rhythms were detected during periods of constant daylight (June-August; 24.40 ± 1.39 h, mean ± SD) and constant darkness (23.89 ± 1.72 h). Exclusive of denning periods (November-April), the time of peak activity remained relatively stable (acrophases: ~1200-1400 h) for most of the year, suggesting either entrainment or masking. However, activity patterns shifted during the spring feeding and seal pupping season, as evidenced by an acrophase inversion to ~2400 h in April, followed by highly variable timing of activity across bears in May. Intriguingly, despite the dynamic environmental photoperiodic conditions, unpredictable daily timing of prey availability, and high between-animal variability, the average duration of activity (alpha) remained stable (11.2 ± 2.9 h) for most of the year. Together, these results reveal a high degree of behavioral plasticity in polar bears while also retaining circadian rhythmicity. Whether this degree of plasticity will benefit polar bears faced with a loss of sea ice remains to be determined.
Collapse
Affiliation(s)
- Jasmine V. Ware
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
- Department of Environment, Government of Nunavut, Igloolik, NU, Canada
| | - Karyn D. Rode
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA
| | - Charles T. Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts, USA
| | - Colby R. Weil
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Heiko T. Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Frare C, Jenkins ME, McClure KM, Drew KL. Seasonal decrease in thermogenesis and increase in vasoconstriction explain seasonal response to N 6 -cyclohexyladenosine-induced hibernation in the Arctic ground squirrel (Urocitellus parryii). J Neurochem 2019; 151:316-335. [PMID: 31273780 PMCID: PMC6819227 DOI: 10.1111/jnc.14814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Hibernation is a seasonal phenomenon characterized by a drop in metabolic rate and body temperature. Adenosine A1 receptor agonists promote hibernation in different mammalian species, and the understanding of the mechanism inducing hibernation will inform clinical strategies to manipulate metabolic demand that are fundamental to conditions such as obesity, metabolic syndrome, and therapeutic hypothermia. Adenosine A1 receptor agonist-induced hibernation in Arctic ground squirrels is regulated by an endogenous circannual (seasonal) rhythm. This study aims to identify the neuronal mechanism underlying the seasonal difference in response to the adenosine A1 receptor agonist. Arctic ground squirrels were implanted with body temperature transmitters and housed at constant ambient temperature (2°C) and light cycle (4L:20D). We administered CHA (N6 -cyclohexyladenosine), an adenosine A1 receptor agonist in euthermic-summer phenotype and euthermic-winter phenotype and used cFos and phenotypic immunoreactivity to identify cell groups affected by season and treatment. We observed lower core and subcutaneous temperature in winter animals and CHA produced a hibernation-like response in winter, but not in summer. cFos-ir was greater in the median preoptic nucleus and the raphe pallidus in summer after CHA. CHA administration also resulted in enhanced cFos-ir in the nucleus tractus solitarius and decreased cFos-ir in the tuberomammillary nucleus in both seasons. In winter, cFos-ir was greater in the supraoptic nucleus and lower in the raphe pallidus than in summer. The seasonal decrease in the thermogenic response to CHA and the seasonal increase in vasoconstriction, assessed by subcutaneous temperature, reflect the endogenous seasonal modulation of the thermoregulatory systems necessary for CHA-induced hibernation. Cover Image for this issue: doi: 10.1111/jnc.14528.
Collapse
Affiliation(s)
- Carla Frare
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mackenzie E Jenkins
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelsey M McClure
- Department of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
10
|
Studd EK, Boudreau MR, Majchrzak YN, Menzies AK, Peers MJL, Seguin JL, Lavergne SG, Boonstra R, Murray DL, Boutin S, Humphries MM. Use of Acceleration and Acoustics to Classify Behavior, Generate Time Budgets, and Evaluate Responses to Moonlight in Free-Ranging Snowshoe Hares. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|