1
|
Li T, Jiang Y, Yang X, Li H, Gong Z, Qin Y, Zhang J, Lu R, Wei G, Wu Y, Lu C. The effects of circularly polarized light on mating behavior and gene expression in Anomala corpulenta (Coleoptera: Scarabaeidae). Front Physiol 2023; 14:1172542. [PMID: 37064909 PMCID: PMC10102372 DOI: 10.3389/fphys.2023.1172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Light is an important abiotic factor affecting insect behavior. In nature, linearly polarized light is common, but circularly polarized light is rare. Left circularly polarized (LCP) light is selectively reflected by the exocuticle of most scarab beetles, including Anomala corpulenta. Despite our previous research showing that this visual signal probably mediates their mating behavior, the way in which it does so is not well elucidated. In this study, we investigated how LCP light affects not only mating behavior but also gene expression in this species using RNA-seq. The results indicated that disruption of LCP light reflection by females of A. corpulenta probably affects the process by which males of A. corpulenta search for mates. Furthermore, the RNA-seq results showed that genes of the environmental signaling pathways and also of several insect reproduction-related amino acid metabolic pathways were differentially expressed in groups exposed and not exposed to LCP light. This implies that A. corpulenta reproduction is probably regulated by LCP light-induced stress. Herein, the results show that LCP light is probably perceived by males of the species, further mediating their mating behavior. However, this hypothesis needs future verification with additional samples.
Collapse
Affiliation(s)
- Tong Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yueli Jiang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaofan Yang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Huiling Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhongjun Gong
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifan Qin
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jing Zhang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruijie Lu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuqing Wu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Yuqing Wu, ; Chuantao Lu,
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Yuqing Wu, ; Chuantao Lu,
| |
Collapse
|
2
|
Chiou TH, Wang CW. Neural processing of linearly and circularly polarized light signal in a mantis shrimp Haptosquilla pulchella. J Exp Biol 2020; 223:jeb219832. [PMID: 33097570 DOI: 10.1242/jeb.219832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Stomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.
Collapse
Affiliation(s)
- Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Li C, Jin X, Zhao T, Zhou J, Duan P. Optically active quantum dots with induced circularly polarized luminescence in amphiphilic peptide dendron hydrogel. NANOSCALE ADVANCES 2019; 1:508-512. [PMID: 36132252 PMCID: PMC9473277 DOI: 10.1039/c8na00216a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 05/27/2023]
Abstract
In this study, water-soluble semiconductor quantum dots (QDs) showing induced circularly polarized luminescence (CPL) in an organic-inorganic coassembled hydrogel were demonstrated. Achiral QDs could be encapsulated into a chiral peptide dendron hydrogel through cogelation. These cogels displayed intense induced circularly polarized emission. In addition, the direction of the CPL property of QD cogels could be regulated by the supramolecular chirality of hydrogels. Our findings reveal that the emergence of CPL achiral QDs can be triggered by the chirality transfer in a multiple-component dendron hydrogel system. This study has given a new understanding into the design of functional chiroptical materials.
Collapse
Affiliation(s)
- Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China +86-10-82545510
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application of the Ministry of Education, Xiangtan University Xiangtan 411105 P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China +86-10-82545510
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China +86-10-82545510
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jin Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China +86-10-82545510
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China +86-10-82545510
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Foster JJ, Kirwan JD, El Jundi B, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Johnsen S, Dacke M. Orienting to polarized light at night - matching lunar skylight to performance in a nocturnal beetle. ACTA ACUST UNITED AC 2019; 222:jeb.188532. [PMID: 30530838 DOI: 10.1242/jeb.188532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - John D Kirwan
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Basil El Jundi
- Biocenter (Zoology II), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Sönke Johnsen
- Biology Department, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
5
|
Odin GP, McNamara ME, Arwin H, Järrendahl K. Experimental degradation of helicoidal photonic nanostructures in scarab beetles (Coleoptera: Scarabaeidae): implications for the identification of circularly polarizing cuticle in the fossil record. J R Soc Interface 2018; 15:rsif.2018.0560. [PMID: 30429263 DOI: 10.1098/rsif.2018.0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus (Chrysina) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.
Collapse
Affiliation(s)
- Giliane P Odin
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland
| | - Hans Arwin
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Kenneth Järrendahl
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
6
|
Thoen HH, Sayre ME, Marshall J, Strausfeld NJ. Representation of the stomatopod's retinal midband in the optic lobes: Putative neural substrates for integrating chromatic, achromatic and polarization information. J Comp Neurol 2018; 526:1148-1165. [PMID: 29377111 DOI: 10.1002/cne.24398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/05/2023]
Abstract
Stomatopods have an elaborate visual system served by a retina that is unique to this class of pancrustaceans. Its upper and lower eye hemispheres encode luminance and linear polarization while an equatorial band of photoreceptors termed the midband detects color, circularly polarized light and linear polarization in the ultraviolet. In common with many malacostracan crustaceans, stomatopods have stalked eyes, but they can move these independently within three degrees of rotational freedom. Both eyes separately use saccadic and scanning movements but they can also move in a coordinated fashion to track selected targets or maintain a forward eyestalk posture during swimming. Visual information is initially processed in the first two optic neuropils, the lamina and the medulla, where the eye's midband is represented by enlarged regions within each neuropil that contain populations of neurons, the axons of which are segregated from the neuropil regions subtending the hemispheres. Neuronal channels representing the midband extend from the medulla to the lobula where populations of putative inhibitory glutamic acid decarboxylase-positive neurons and tyrosine hydroxylase-positive neurons intrinsic to the lobula have specific associations with the midband. Here we investigate the organization of the midband representation in the medulla and the lobula in the context of their overall architecture. We discuss the implications of observed arrangements, in which midband inputs to the lobula send out collaterals that extend across the retinotopic mosaic pertaining to the hemispheres. This organization suggests an integrative design that diverges from the eumalacostracan ground pattern and, for the stomatopod, enables color and polarization information to be integrated with luminance information that presumably encodes shape and motion.
Collapse
Affiliation(s)
- Hanne Halkinrud Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| |
Collapse
|