1
|
Green JP, Franco C, Davidson AJ, Lee V, Stockley P, Beynon RJ, Hurst JL. Cryptic kin discrimination during communal lactation in mice favours cooperation between relatives. Commun Biol 2023; 6:734. [PMID: 37454193 PMCID: PMC10349843 DOI: 10.1038/s42003-023-05115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Breeding females can cooperate by rearing their offspring communally, sharing synergistic benefits of offspring care but risking exploitation by partners. In lactating mammals, communal rearing occurs mostly among close relatives. Inclusive fitness theory predicts enhanced cooperation between related partners and greater willingness to compensate for any partner under-investment, while females are less likely to bias investment towards own offspring. We use a dual isotopic tracer approach to track individual milk allocation when familiar pairs of sisters or unrelated house mice reared offspring communally. Closely related pairs show lower energy demand and pups experience better access to non-maternal milk. Lactational investment is more skewed between sister partners but females pay greater energetic costs per own offspring reared with an unrelated partner. The choice of close kin as cooperative partners is strongly favoured by these direct as well as indirect benefits, providing a driver to maintain female kin groups for communal breeding.
Collapse
Affiliation(s)
- Jonathan P Green
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Catarina Franco
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Amanda J Davidson
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Vicki Lee
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Paula Stockley
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Jane L Hurst
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
2
|
Morello GM, Hultgren J, Capas-Peneda S, Wiltshire M, Thomas A, Wardle-Jones H, Brajon S, Gilbert C, Olsson IAS. High laboratory mouse pre-weaning mortality associated with litter overlap, advanced dam age, small and large litters. PLoS One 2020; 15:e0236290. [PMID: 32785214 PMCID: PMC7423063 DOI: 10.1371/journal.pone.0236290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
High and variable pre-weaning mortality is a persistent problem in laboratory mouse breeding. Assuming a modest 15% mortality rate across mouse strains, means that approximately 1 million more pups are produced yearly in the EU to compensate for those which die. This paper presents the first large study under practical husbandry conditions to determine the risk factors associated with mouse pre-weaning mortality. We analysed historical records from 219,975 pups from two breeding facilities, collected as part of their management routine and including information on number of pups born and weaned per litter, parents’ age and identification, and dates of birth and death of all animals. Pups were counted once in their first week of life and at weaning, and once every one or two weeks, depending on the need for cage cleaning. Dead pups were recorded as soon as these were found during the daily cage screening (without opening the cage). It was hypothesized that litter overlap (i.e. the presence of older siblings in the cage when new pups are born), a recurrent social configuration in trio-housed mice, is associated with increased newborn mortality, along with advanced dam age, large litter size, and a high number and age of older siblings in the cage. The estimated probability of pup death was two to seven percentage points higher in cages with litter overlap compared to those without. Litter overlap was associated with an increase in death of the entire litter of five and six percentage points, which represent an increase of 19% and 103% compared to non-overlapped litters in the two breeding facilities, respectively. Increased number and age of older siblings, advanced dam age, small litter size (less than four pups born) and large litter size (over 11 pups born) were associated with increased probability of pup death.
Collapse
Affiliation(s)
- Gabriela M. Morello
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
- * E-mail:
| | - Jan Hultgren
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Sara Capas-Peneda
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Aurelie Thomas
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Sophie Brajon
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Colin Gilbert
- Babraham Institute, Babraham, Cambridge, United Kingdom
| | - I. Anna S. Olsson
- Laboratory Animal Science, IBMC-Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
- i3S –Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Huang Y, Mendoza JO, Hambly C, Li B, Jin Z, Li L, Madizi M, Hu S, Speakman JR. Limits to sustained energy intake. XXXI. Effect of graded levels of dietary fat on lactation performance in Swiss mice. J Exp Biol 2020; 223:jeb221911. [PMID: 32291324 DOI: 10.1242/jeb.221911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/04/2020] [Indexed: 08/26/2023]
Abstract
The heat dissipation limit theory predicts that lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared with those of 8.3 and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6; 25%: 278.8±25.8; 41.7%: 359.6±51.5; 58.3%: 353.7±43.6; 66.6%: 346±44.7 kJ day-1), lower daily energy expenditure (8.3%: 128.5±16; 25%: 131.6±8.4; 41.7%: 124.4±10.8; 58.3%: 115.1±10.5; 66.6%: 111.2±11.5 kJ day-1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3; 25%: 147.2±25.1; 41.7%: 225.1±49.6; 58.3%: 238.6±40.1; 66.6%: 234.8±41.1 kJ day-1). Milk fat content (%) was unrelated to dietary fat content, indicating that females on higher fat diets (>41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared with those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Basic Medical Science, Dali University, Dali, Yunnan 671000, China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Moshen Madizi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan 650223, China
| |
Collapse
|
4
|
Zhao ZJ, Derous D, Gerrard A, Wen J, Liu X, Tan S, Hambly C, Speakman JR. Limits to sustained energy intake. XXX. Constraint or restraint? Manipulations of food supply show peak food intake in lactation is constrained. J Exp Biol 2020; 223:jeb208314. [PMID: 32139473 DOI: 10.1242/jeb.208314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/27/2020] [Indexed: 11/20/2022]
Abstract
Lactating mice increase food intake 4- to 5-fold, reaching an asymptote in late lactation. A key question is whether this asymptote reflects a physiological constraint, or a maternal investment strategy (a 'restraint'). We exposed lactating mice to periods of food restriction, hypothesizing that if the limit reflected restraint, they would compensate by breaching the asymptote when refeeding. In contrast, if it was a constraint, they would by definition be unable to increase their intake on refeeding days. Using isotope methods, we found that during food restriction, the females shut down milk production, impacting offspring growth. During refeeding, food intake and milk production rose again, but not significantly above unrestricted controls. These data provide strong evidence that asymptotic intake in lactation reflects a physiological/physical constraint, rather than restraint. Because hypothalamic neuropeptide Y (Npy) was upregulated under both states of restriction, this suggests the constraint is not imposed by limits in the capacity to upregulate hunger signalling (the saturated neural capacity hypothesis). Understanding the genetic basis of the constraint will be a key future goal and will provide us additional information on the nature of the constraining factors on reproductive output, and their potential links to life history strategies.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Abby Gerrard
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Jing Wen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
| | - Song Tan
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- CAS Center of Excellence for Animal Evolution and Genetics, Kunming 650223, China
| |
Collapse
|
5
|
Gilman C. Mouse mums consider their futures. J Exp Biol 2018. [DOI: 10.1242/jeb.177139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kagya-Agyemang JK, Vaanholt LM, Hambly C, Król E, Mitchell SE, Speakman JR. Limits to sustained energy intake XXVIII: Beneficial effects of high dietary fat on lactation performance in mice. J Exp Biol 2018; 221:jeb.180828. [DOI: 10.1242/jeb.180828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Maximal animal performance may be limited by the ability of animals to dissipate heat; the heat dissipation limitation (HDL) theory. Since diets vary in the incidental heat produced during digestion (specific dynamic action, SDA), the HDL theory predicts lactating female mice consuming diets with lower SDA should have increased reproductive performance. Dietary fat has a lower SDA than dietary carbohydrate. Female mice were fed low (LF), medium (MF) or high fat (HF) diets (10%, 45% and 60% energy from fat respectively) from days 4-18 of lactation. HF and MF-fed mice weaned significantly heavier litters than LF mice. This was because they not only consumed more energy (metabolisable energy intake, Emei; HF:306.5±25.0, MF:340.5±13.5 kJ d−1) at peak lactation, but also delivered more milk energy to their pups (milk energy output, Emilk: 203.2±49.9, 229.3±42.2 kJ d−1 respectively) than the LF-fed mice (Emei =266.7±4.5, Emilk =164.60±30.59 kJ d−1). This effect was greater than predicted from the SDA of the different diets combined with a mathematical model based on the HDL theory. Fatty acid profiles of the diets, milk and pups, showed significant correlations between the profiles. Besides reduced SDA, HF and MF-fed mice were probably able to directly transfer absorbed dietary fat into milk, reducing the heat production of lactogenesis, and enabling them to perform better than expected from the HDL model. In summary, HF and MF diets had beneficial effects on reproductive performance compared to the LF diet because they enabled mice to generate milk more efficiently with less incidental heat production.
Collapse
Affiliation(s)
- J. K. Kagya-Agyemang
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- College of Agriculture Education, University of Education, Winneba, P.O. Box 40, Mampong-Ashanti, Ghana
| | - L. M. Vaanholt
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - C. Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - E. Król
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - S. E. Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - J. R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- State key laboratory of molecular developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing China
| |
Collapse
|