1
|
Aguilar BL, Toib J, Malkova L, Forcelli PA. An unescapable looming threat paradigm for assessing anxiety-like responses in rats. Behav Brain Res 2025; 477:115296. [PMID: 39426528 PMCID: PMC11613989 DOI: 10.1016/j.bbr.2024.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Rapidly approaching visual stimuli (i.e. looming objects) are known to evoke unconditioned defense responses across species. In rodents, this threat reactivity repertoire includes freezing and fleeing behavior. Although components of the circuitry underlying unconditioned response to a looming threat have been elucidated, both a temporal characterization and drug effects on the freezing response have not yet been reported. Here, we describe a modified version of a looming threat task in which no escape route is available. In this task, we observed unconditioned freezing prior to, during, and after exposure to a looming threat stimulus. In Long Evans (LE) and Sprague-Dawley (SD) rats, we report looming stimulus-specific freezing response. We further explored the specificity and pharmacosensitivity of this response in male and female LE rats. Administration of a GABA-A receptor negative allosteric modulator (FG-7142) did not re-establish freezing in habituated animals; however, administration of a GABA-A receptor positive allosteric modulator (diazepam) in naïve LEs significantly reduced freezing during the post-looming period in a sex-dependent manner. Presentation of an unescapable looming stimulus results in freezing that extends beyond the acute threat exposure. Because freezing responses outlast the initial threat, and display only modest sensitivity to conventional anxiolytic therapy, this may represent a platform for screening agents in treatment-refractory anxiety.
Collapse
Affiliation(s)
- Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States
| | - Jonathan Toib
- Department of Pharmacology & Physiology, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, United States; Department of Pharmacology & Physiology, United States; Department of Neuroscience, United States.
| |
Collapse
|
2
|
Yadipour M, Billah MA, Faruque IA. Optic flow enrichment via Drosophila head and retina motions to support inflight position regulation. J Theor Biol 2023; 562:111416. [PMID: 36681182 DOI: 10.1016/j.jtbi.2023.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Developing a functional description of the neural control circuits and visual feedback paths underlying insect flight behaviors is an active research area. Feedback controllers incorporating engineering models of the insect visual system outputs have described some flight behaviors, yet they do not explain how insects are able to stabilize their body position relative to nearby targets such as neighbors or forage sources, especially in challenging environments in which optic flow is poor. The insect experimental community is simultaneously recording a growing library of in-flight head and eye motions that may be linked to increased perception. This study develops a quantitative model of the optic flow experienced by a flying insect or robot during head yawing rotations (distinct from lateral peering motions in previous work) with a single other target in view. This study then applies a model of insect visuomotor feedback to show via analysis and simulation of five species that these head motions sufficiently enrich the optic flow and that the output feedback can provide relative position regulation relative to the single target (asymptotic stability). In the simplifying case of pure rotation relative to the body, theoretical analysis provides a stronger stability guarantee. The results are shown to be robust to anatomical neck angle limits and body vibrations, persist with more detailed Drosophila lateral-directional flight dynamics simulations, and generalize to recent retinal motion studies. Together, these results suggest that the optic flow enrichment provided by head or pseudopupil rotation could be used in an insect's neural processing circuit to enable position regulation.
Collapse
Affiliation(s)
- Mehdi Yadipour
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Md Arif Billah
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Imraan A Faruque
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Thyselius M, Ogawa Y, Leibbrandt R, Wardill TJ, Gonzalez-Bellido PT, Nordström K. Hoverfly (Eristalis tenax) pursuit of artificial targets. J Exp Biol 2023; 226:289473. [PMID: 36695720 PMCID: PMC10088529 DOI: 10.1242/jeb.244895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The ability to visualize small moving objects is vital for the survival of many animals, as these could represent predators or prey. For example, predatory insects, including dragonflies, robber flies and killer flies, perform elegant, high-speed pursuits of both biological and artificial targets. Many non-predatory insects, including male hoverflies and blowflies, also pursue targets during territorial or courtship interactions. To date, most hoverfly pursuits have been studied outdoors. To investigate hoverfly (Eristalis tenax) pursuits under more controlled settings, we constructed an indoor arena that was large enough to encourage naturalistic behavior. We presented artificial beads of different sizes, moving at different speeds, and filmed pursuits with two cameras, allowing subsequent 3D reconstruction of the hoverfly and bead position as a function of time. We show that male E. tenax hoverflies are unlikely to use strict heuristic rules based on angular size or speed to determine when to start pursuit, at least in our indoor setting. We found that hoverflies pursued faster beads when the trajectory involved flying downwards towards the bead. Furthermore, we show that target pursuit behavior can be broken down into two stages. In the first stage, the hoverfly attempts to rapidly decreases the distance to the target by intercepting it at high speed. During the second stage, the hoverfly's forward speed is correlated with the speed of the bead, so that the hoverfly remains close, but without catching it. This may be similar to dragonfly shadowing behavior, previously coined 'motion camouflage'.
Collapse
Affiliation(s)
- Malin Thyselius
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Yuri Ogawa
- Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Richard Leibbrandt
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Trevor J Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Karin Nordström
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden.,Flinders Health and Medical Research Institute, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
4
|
Sánchez M, Velásquez Y, González M, Cuevas J. Activity and foraging behaviour of the hoverfly Eristalinus aeneus (Scopoli, 1763) in protected cultivation of mango ( Mangifera indica L.). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:101-109. [PMID: 34486962 DOI: 10.1017/s0007485321000717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hoverfly Eristalinus aeneus is an important pollinator of crops and wild plants. However, there is a lack of detailed information about its foraging behaviour and its potential as a managed pollinator of mango. Given the growing economic importance of protected cultivation of mango, our aim is to study the flight activity and foraging behaviour of E. aeneus on this crop. Eristalinus aeneus displayed a bimodal daily activity, with peaks during mid-morning and mid-afternoon. The activity was maintained over a wide range of temperature (from 17.8 up to 37.4°C), light intensity (from 8.2 up to 57.4 klux) and relative humidity (from 19.0 up to 88.8%). The syrphids were active most of the time in this crop, and we observed five different types of activity: foraging (67%), resting (17%), flying (10%), grooming (4%) and walking (2%). This hoverfly visited hermaphrodite flowers more often than male flowers. On average, it visited 36.46 ± 13.92 flowers per 5 min, with a higher number of floral visits for nectar feeding. The duration of the visits to hermaphrodite and male flowers was similar but pollen-feeding visits lasted longer (6.44 s per flower) than nectar-feeding ones (5.51 s per flower). The highest number of visits to mango inflorescences was observed during the morning, but the longest visits occurred at midday. The implication of these results for the potential use of E. aeneus as a managed pollinator in protected cultivation of mango is discussed.
Collapse
Affiliation(s)
- M Sánchez
- Department of Agronomy, University of Almería, ceiA3, La Cañada de San Urbano s/n, 04120, Almería, Spain
- Polyfly S.L., Avenida de la Innovación 15, 04131, Almería, Spain
| | - Y Velásquez
- Polyfly S.L., Avenida de la Innovación 15, 04131, Almería, Spain
| | - M González
- Experimental Station of Foundation Cajamar, Paraje Las Palmerillas 25, 04710, El Ejido, Almería, Spain
| | - J Cuevas
- Department of Agronomy, University of Almería, ceiA3, La Cañada de San Urbano s/n, 04120, Almería, Spain
| |
Collapse
|
5
|
Image statistics of the environment surrounding freely behaving hoverflies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:373-385. [PMID: 30937518 PMCID: PMC6579776 DOI: 10.1007/s00359-019-01329-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 12/04/2022]
Abstract
Natural scenes are not as random as they might appear, but are constrained in both space and time. The 2-dimensional spatial constraints can be described by quantifying the image statistics of photographs. Human observers perceive images with naturalistic image statistics as more pleasant to view, and both fly and vertebrate peripheral and higher order visual neurons are tuned to naturalistic image statistics. However, for a given animal, what is natural differs depending on the behavior, and even if we have a broad understanding of image statistics, we know less about the scenes relevant for particular behaviors. To mitigate this, we here investigate the image statistics surrounding Episyrphus balteatus hoverflies, where the males hover in sun shafts created by surrounding trees, producing a rich and dense background texture and also intricate shadow patterns on the ground. We quantified the image statistics of photographs of the ground and the surrounding panorama, as the ventral and lateral visual field is particularly important for visual flight control, and found differences in spatial statistics in photos where the hoverflies were hovering compared to where they were flying. Our results can, in the future, be used to create more naturalistic stimuli for experimenter-controlled experiments in the laboratory.
Collapse
|
6
|
Stott TP, Olson EGN, Parkinson RH, Gray JR. Three-dimensional shape and velocity changes affect responses of a locust visual interneuron to approaching objects. ACTA ACUST UNITED AC 2018; 221:jeb.191320. [PMID: 30341087 DOI: 10.1242/jeb.191320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
Adaptive collision avoidance behaviours require accurate detection of complex spatiotemporal properties of an object approaching in an animal's natural, three-dimensional environment. Within the locust, the lobula giant movement detector and its postsynaptic partner, the descending contralateral movement detector (DCMD), respond robustly to images that emulate an approaching two-dimensional object and exhibit firing rate modulation correlated with changes in object trajectory. It is not known how this pathway responds to visual expansion of a three-dimensional object or an approaching object that changes velocity, both of which represent natural stimuli. We compared DCMD responses with images that emulate the approach of a sphere with those elicited by a two-dimensional disc. A sphere evoked later peak firing and decreased sensitivity to the ratio of the half size of the object to the approach velocity, resulting in an increased threshold subtense angle required to generate peak firing. We also presented locusts with an approaching sphere that decreased or increased in velocity. A velocity decrease resulted in transition-associated peak firing followed by a firing rate increase that resembled the response to a constant, slower velocity. A velocity increase resulted in an earlier increase in the firing rate that was more pronounced with an earlier transition. These results further demonstrate that this pathway can provide motor circuits for behaviour with salient information about complex stimulus dynamics.
Collapse
Affiliation(s)
- Tarquin P Stott
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Erik G N Olson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Rachel H Parkinson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - John R Gray
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
7
|
Thyselius M, Gonzalez-Bellido PT, Wardill TJ, Nordström K. Visual approach computation in feeding hoverflies. ACTA ACUST UNITED AC 2018; 221:jeb.177162. [PMID: 29720383 PMCID: PMC5992577 DOI: 10.1242/jeb.177162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/02/2018] [Indexed: 12/05/2022]
Abstract
On warm sunny days, female hoverflies are often observed feeding from a wide range of wild and cultivated flowers. In doing so, hoverflies serve a vital role as alternative pollinators, and are suggested to be the most important pollinators after bees and bumblebees. Unless the flower hoverflies are feeding from is large, they do not readily share the space with other insects, but instead opt to leave if another insect approaches. We used high-speed videography followed by 3D reconstruction of flight trajectories to quantify how female Eristalis hoverflies respond to approaching bees, wasps and two different hoverfly species. We found that, in 94% of the interactions, the occupant female left the flower when approached by another insect. We found that compared with spontaneous take-offs, the occupant hoverfly's escape response was performed at ∼3 times higher speed (spontaneous take-off at 0.2±0.05 m s−1 compared with 0.55±0.08 m s−1 when approached by another Eristalis). The hoverflies tended to take off upward and forward, while taking the incomer's approach angle into account. Intriguingly, we found that, when approached by wasps, the occupant Eristalis took off at a higher speed and when the wasp was further away. This suggests that feeding hoverflies may be able to distinguish these predators, demanding impressive visual capabilities. Our results, including quantification of the visual information available before occupant take-off, provide important insight into how freely behaving hoverflies perform escape responses from competitors and predators (e.g. wasps) in the wild. Highlighted Article: Reconstruction of the take-off and flight of feeding female hoverflies when approached by other insects, and quantification of visual parameters, reveals how freely behaving hoverflies perform escape responses from competitors and predators in the wild.
Collapse
Affiliation(s)
- Malin Thyselius
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Paloma T Gonzalez-Bellido
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB3 2EG, UK
| | - Trevor J Wardill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB3 2EG, UK
| | - Karin Nordström
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden .,Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
8
|
Knight K. Choosy hoverflies make swift exit to evade predator wasps. J Exp Biol 2018. [DOI: 10.1242/jeb.183004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|