1
|
van Soldt BJ, Wang T, Filogonio R, Danielsen CC. The mechanical and morphological properties of systemic and pulmonary arteries differ in the earth boa, a snake without ventricular pressure separation. J Exp Biol 2022; 225:275580. [PMID: 35642934 DOI: 10.1242/jeb.244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
The walls of the mammalian aorta and pulmonary artery are characterized by diverging morphologies and mechanical properties, which has been correlated with high systemic and low pulmonary blood pressures, as a result of intraventricular pressure separation. However, the relation between intraventricular pressure separation and diverging aortic and pulmonary artery wall morphologies and mechanical characteristics is not understood. The snake cardiovascular system poses a unique model for the study of this question, since representatives both with and without intraventricular pressure separation exist. In this study we perform uniaxial tensile testing on vessel samples taken from the aortas and pulmonary arteries of the earth boa, Acrantophis madagascariensis, a species without intraventricular pressure separation. We then compare these morphological and mechanical characteristics with samples from the ball python, Python regius, and the yellow anaconda, Eunectes notaeus, species with and without intraventricular pressure separation, respectively. Our data suggest that although the aortas and pulmonary arteries of A. madagascariensis respond similarly to the same intramural blood pressures, they diverge in morphology, and that this attribute extends to E. notaeus. In contrast, P. regius aortas and pulmonary arteries diverge both morphologically and in terms of their mechanical properties. Our data indicate that intraventricular pressure separation cannot fully explain diverging aortic and pulmonary artery morphologies. Following the Law of Laplace, we propose that pulmonary arteries of small luminal diameter represent a mechanism to protect the fragile pulmonary vasculature by reducing the blood volume that passes through, to which genetic factors may contribute more strongly than physiological parameters.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Gladstone Institute of Cardiovascular Disease, J. David Gladstone Institutes, 1650 Owns St, San Francisco, CA, 94158, USA
| | - Tobias Wang
- Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | | |
Collapse
|
2
|
Baroreflex responses to activity at different temperatures in the South American rattlesnake, Crotalus durissus. J Comp Physiol B 2021; 191:917-925. [PMID: 34363512 DOI: 10.1007/s00360-021-01396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
In humans, physical exercise imposes narrower limits for the heart rate (fH) response of the baroreflex, and vascular modulation becomes largely responsible for arterial pressure regulation. In undisturbed reptiles, the baroreflex-related fH alterations at the operating point (Gop) decreases at elevated body temperatures (Tb) and the vascular regulation changes accordingly. We investigated how the baroreflex of rattlesnakes, Crotalus durissus, is regulated during an activity at different Tb, expecting that activity would reduce the capacity of the cardiac baroreflex neural pathway to buffer arterial pressure fluctuations while being compensated by the vascular neural pathway regulation. Snakes were catheterized for blood pressure assessment at three different Tb: 15, 20 and 30 °C. Data were collected before and after activity at each Tb. Baroreflex gain (Gop) was assessed with the sequence method; the vascular limb, with the time constant of pressure decay (τ), using the two-element Windkessel equation. Both Gop and τ reduced when Tb increased. Activity also reduced Gop and τ in all Tb. The relationship between τ and pulse interval (τ/PI) was unaffected by the temperature at resting snakes, albeit it reduced after activity at 20 °C and 30 °C. The unchanged τ/PI and normalized Gop at different Tb indicated those variables are actively adjusted to work at different fH and pressure conditions at rest. Our data suggest that during activity, the baroreflex-related fH response is attenuated and hypertension is buffered by a disproportional increase in the rate which pressure decays during diastole. This compensation seems especially important at higher Tb where Gop is already low.
Collapse
|
3
|
Filogonio R, Dubansky BD, Dubansky BH, Wang T, Elsey RM, Leite CAC, Crossley DA. Arterial wall thickening normalizes arterial wall tension with growth in American alligators, Alligator mississippiensis. J Comp Physiol B 2021; 191:553-562. [PMID: 33629153 DOI: 10.1007/s00360-021-01353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Arterial wall tension increases with luminal radius and arterial pressure. Hence, as body mass (Mb) increases, associated increases in radius induces larger tension. Thus, it could be predicted that high tension would increase the potential for rupture of the arterial wall. Studies on mammals have focused on systemic arteries and have shown that arterial wall thickness increases with Mb and normalizes tension. Reptiles are good models to study scaling because some species exhibit large body size range associated with growth, thus, allowing for ontogenetic comparisons. We used post hatch American alligators, Alligator mississippiensis, ranging from 0.12 to 6.80 kg (~ 60-fold) to investigate how both the right aortic arch (RAo) and the left pulmonary artery (LPA) change with Mb. We tested two possibilities: (i) wall thickness increases with Mb and normalizes wall tension, such that stress (stress = tension/thickness) remains unchanged; (ii) collagen content scales with Mb and increases arterial strength. We measured heart rate and systolic and mean pressures from both systemic and pulmonary circulations in anesthetized animals. Once stabilized alligators were injected with adrenaline to induce a physiologically relevant increase in pressure. Heart rate decreased and systemic pressures increased with Mb; pulmonary pressures remained unchanged. Both the RAo and LPA were fixed under physiological hydrostatic pressures and displayed larger radius, wall tension and thickness as Mb increased, thus, stress was independent from Mb; relative collagen content was unchanged. We conclude that increased wall thickness normalizes tension and reduces the chances of arterial walls rupturing in large alligators.
Collapse
Affiliation(s)
- Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Benjamin D Dubansky
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| | - Brooke H Dubansky
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, Fort Worth, TX, USA
| | - Tobias Wang
- Section for Zoophysiology, Department of Biosciences, Aarhus University, 8000, Aarhus C, Denmark
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA, 70643, USA
| | - Cléo A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Dane A Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, USA
| |
Collapse
|
4
|
Filogonio R, Sartori MR, Morgensen S, Tavares D, Campos R, Abe AS, Taylor EW, Rodrigues GJ, De Nucci G, Simonsen U, Leite CAC, Wang T. Cholinergic regulation along the pulmonary arterial tree of the South American rattlesnake: vascular reactivity, muscarinic receptors, and vagal innervation. Am J Physiol Regul Integr Comp Physiol 2020; 319:R156-R170. [DOI: 10.1152/ajpregu.00310.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vascular tone in the reptilian pulmonary vasculature is primarily under cholinergic, muscarinic control exerted via the vagus nerve. This control has been ascribed to a sphincter located at the arterial outflow, but we speculated whether the vascular control in the pulmonary artery is more widespread, such that responses to acetylcholine and electrical stimulation, as well as the expression of muscarinic receptors, are prevalent along its length. Working on the South American rattlesnake ( Crotalus durissus), we studied four different portions of the pulmonary artery (truncus, proximal, distal, and branches). Acetylcholine elicited robust vasoconstriction in the proximal, distal, and branch portions, but the truncus vasodilated. Electrical field stimulation (EFS) caused contractions in all segments, an effect partially blocked by atropine. We identified all five subtypes of muscarinic receptors (M1–M5). The expression of the M1 receptor was largest in the distal end and branches of the pulmonary artery, whereas expression of the muscarinic M3 receptor was markedly larger in the truncus of the pulmonary artery. Application of the neural tracer 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate (DiI) revealed widespread innervation along the whole pulmonary artery, and retrograde transport of the same tracer indicated two separate locations in the brainstem providing vagal innervation of the pulmonary artery, the medial dorsal motor nucleus of the vagus and a ventro-lateral location, possibly constituting a nucleus ambiguus. These results revealed parasympathetic innervation of a large portion of the pulmonary artery, which is responsible for regulation of vascular conductance in C. durissus, and implied its integration with cardiorespiratory control.
Collapse
Affiliation(s)
- Renato Filogonio
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Marina R. Sartori
- Department of Zoology, State University of São Paulo, Rio Claro, São Paulo, Brazil
| | - Susie Morgensen
- Department of Biomedicine, Pulmonary, and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Rafael Campos
- Superior Institute of Biomedical Sciences, Ceará State University, Fortaleza, Brazil
| | - Augusto S. Abe
- Department of Zoology, State University of São Paulo, Rio Claro, São Paulo, Brazil
| | - Edwin W. Taylor
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerson J. Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Gilberto De Nucci
- Faculty of Medical Sciences, Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary, and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Cléo A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Beck L, Su J, Comerma-Steffensen S, Pinilla E, Carlsson R, Hernanz R, Sheykhzade M, Danielsen CC, Simonsen U. Endothelial Dysfunction and Passive Changes in the Aorta and Coronary Arteries of Diabetic db/db Mice. Front Physiol 2020; 11:667. [PMID: 32655412 PMCID: PMC7324802 DOI: 10.3389/fphys.2020.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell dysfunction and vessel stiffening are associated with a worsened prognosis in diabetic patients with cardiovascular diseases. The present study hypothesized that sex impacts endothelial dysfunction and structural changes in arteries from diabetic mice. In diabetic (db/db) and normoglycaemic (db/db+) mice, the mechanical properties were investigated in pressurized isolated left anterior descending coronary arteries and aorta segments that were subjected to tensile testing. Functional studies were performed on wire-mounted vascular segments. The male and female db/db mice were hyperglycaemic and had markedly increased body weight. In isolated aorta segments without the contribution of smooth muscle cells, load to rupture, viscoelasticity, and collagen content were decreased suggesting larger distensibility of the arterial wall in both male and female db/db mice. In male db/db aorta segments with smooth muscle cell contribution, lumen diameter was smaller and the passive stretch-tension curve was leftward-shifted, while they were unaltered in female db/db aorta segments versus control db/db+ mice. In contrast to female db/db mice, coronary arteries from male db/db mice had altered stress-strain relationships and increased distensibility. Transthoracic echocardiography revealed a dilated left ventricle with unaltered cardiac output, while aortic flow velocity was decreased in male db/db mice. Impairment of acetylcholine relaxation was aggravated in aorta from female db/db compared to control and male db/db mice, while impairment of sodium nitroprusside relaxations was only observed in aorta from male db/db mice. The remodeling in the coronary arteries and aorta suggests an adaptation of the arterial wall to the reduced flow velocity with sex-specific differences in the passive properties of aorta and coronary arteries. The findings of less distensible arteries and more pronounced endothelial dysfunction in female compared to male diabetic mice may have implications for the observed higher incidence of macrovascular complications in diabetic women.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Junjing Su
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences/Animal Physiology, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Rune Carlsson
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl Christian Danielsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| |
Collapse
|