1
|
Gonzalez M, Gradwell MA, Thackray JK, Patel KR, Temkar KK, Abraira VE. Using DeepLabCut-Live to probe state dependent neural circuits of behavior with closed-loop optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605489. [PMID: 39131312 PMCID: PMC11312470 DOI: 10.1101/2024.07.28.605489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Closed-loop behavior paradigms enable us to dissect the state-dependent neural circuits underlying behavior in real-time. However, studying context-dependent locomotor perturbations has been challenging due to limitations in molecular tools and techniques for real-time manipulation of spinal cord circuits. New Method We developed a novel closed-loop optogenetic stimulation paradigm that utilizes DeepLabCut-Live pose estimation to manipulate primary sensory afferent activity at specific phases of the locomotor cycle in mice. A compact DeepLabCut model was trained to track hindlimb kinematics in real-time and integrated into the Bonsai visual programming framework. This allowed an LED to be triggered to photo-stimulate sensory neurons expressing channelrhodopsin at user-defined pose-based criteria, such as during the stance or swing phase. Results Optogenetic activation of nociceptive TRPV1+ sensory neurons during treadmill locomotion reliably evoked paw withdrawal responses. Photoactivation during stance generated a brief withdrawal, while stimulation during swing elicited a prolonged response likely engaging stumbling corrective reflexes. Comparison with Existing Methods This new method allows for high spatiotemporal precision in manipulating spinal circuits based on the phase of the locomotor cycle. Unlike previous approaches, this closed-loop system can control for the state-dependent nature of sensorimotor responses during locomotion. Conclusions Integrating DeepLabCut-Live with optogenetics provides a powerful new approach to dissect the context-dependent role of sensory feedback and spinal interneurons in modulating locomotion. This technique opens new avenues for uncovering the neural substrates of state-dependent behaviors and has broad applicability for studies of real-time closed-loop manipulation based on pose estimation.
Collapse
Affiliation(s)
- Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Psychology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Kanaksha K Temkar
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
2
|
Santuz A, Laflamme OD, Akay T. The brain integrates proprioceptive information to ensure robust locomotion. J Physiol 2022; 600:5267-5294. [PMID: 36271747 DOI: 10.1113/jp283181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Robust locomotion relies on information from proprioceptors: sensory organs that communicate the position of body parts to the spinal cord and brain. Proprioceptive circuits in the spinal cord are known to coarsely regulate locomotion in the presence of perturbations. Yet, the regulatory importance of the brain in maintaining robust locomotion remains less clear. Here, through mouse genetic studies and in vivo electrophysiology, we examined the role of the brain in integrating proprioceptive information during perturbed locomotion. The systemic removal of proprioceptors left the mice in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild-type mice and characterised by longer and less accurate synergistic activation patterns. By contrast, after surgically interrupting the ascending proprioceptive projection to the brain through the dorsal column of the spinal cord, wild-type mice showed normal walking behaviour, yet lost the ability to respond to external perturbations. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving robust, safe locomotion. KEY POINTS: Whether brain integration of proprioceptive feedback is crucial for coping with perturbed locomotion is not clear. We showed a crucial role of the brain for responding to external perturbations and ensure robust locomotion. We used mouse genetics to remove proprioceptors and a spinal lesion model to interrupt the flow of proprioceptive information to the brain through the dorsal column in wild-type animals. Using a custom-built treadmill, we administered sudden and random mechanical perturbations to mice during walking. External perturbations affected locomotion in wild-type mice similar to the absence of proprioceptors in genetically modified mice. Proprioceptive feedback from muscle spindles and Golgi tendon organs contributed to locomotor robustness. Wild-type mice lost the ability to respond to external perturbations after interruption of the ascending proprioceptive projection to the brainstem.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Olivier D Laflamme
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Merlet AN, Jéhannin P, Mari S, Lecomte CG, Audet J, Harnie J, Rybak IA, Prilutsky BI, Frigon A. Sensory Perturbations from Hindlimb Cutaneous Afferents Generate Coordinated Functional Responses in All Four Limbs during Locomotion in Intact Cats. eNeuro 2022; 9:ENEURO.0178-22.2022. [PMID: 36635238 PMCID: PMC9770017 DOI: 10.1523/eneuro.0178-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Coordinating the four limbs is an important feature of terrestrial mammalian locomotion. When the foot dorsum contacts an obstacle, cutaneous mechanoreceptors send afferent signals to the spinal cord to elicit coordinated reflex responses in the four limbs to ensure dynamic balance and forward progression. To determine how the locomotor pattern of all four limbs changes in response to a sensory perturbation evoked by activating cutaneous afferents from one hindlimb, we electrically stimulated the superficial peroneal (SP) nerve with a relatively long train at four different phases (mid-stance, stance-to-swing transition, mid-swing, and swing-to-stance transition) of the hindlimb cycle in seven adult cats. The largest functional effects of the stimulation were found at mid-swing and at the stance-to-swing transition with several changes in the ipsilateral hindlimb, such as increased activity in muscles that flex the knee and hip joints, increased joint flexion and toe height, increased stride/step lengths and increased swing duration. We also observed several changes in support periods to shift support from the stimulated hindlimb to the other three limbs. The same stimulation applied at mid-stance and the swing-to-stance transition produced more subtle changes in the pattern. We observed no changes in stride and step lengths in the ipsilateral hindlimb with stimulation in these phases. We did observe some slightly greater flexions at the knee and ankle joints with stimulation at mid-stance and a reduction in double support periods and increase in triple support. Our results show that correcting or preventing stumbling involves functional contributions from all four limbs.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
4
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Laflamme OD, Ibrahim M, Akay T. Crossed reflex responses to flexor nerve stimulation in mice. J Neurophysiol 2022; 127:493-503. [PMID: 34986055 PMCID: PMC8836714 DOI: 10.1152/jn.00385.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Motor responses in one leg to sensory stimulation of the contralateral leg have been named "crossed reflexes" and are extensively investigated in cats and humans. Despite this effort, a circuit-level understanding of the crossed reflexes has remained missing. In mice, advances in molecular genetics enabled insights into the "commissural spinal circuitry" that ensures coordinated leg movements during locomotion. Despite some common features between the commissural spinal circuitry and the circuit for the crossed reflexes, the degree to which they overlap has remained obscure. Here, we describe excitatory crossed reflex responses elicited by electrically stimulating the common peroneal nerve that mainly innervates ankle flexor muscles and the skin on anterolateral aspect of the hind leg. Stimulation of the peroneal nerve with low current intensity evoked low-amplitude motor responses in the contralateral flexor and extensor muscles. At higher current strengths, stimulation of the same nerve evoked stronger and more synchronous responses in the same contralateral muscles. In addition to the excitatory crossed reflex pathway indicated by muscle activation, we demonstrate the presence of an inhibitory crossed reflex pathway, which was modulated when the motor pools were active during walking. The results are compared with the crossed reflex responses initiated by stimulating proprioceptors from extensor muscles and cutaneous afferents from the posterior part of the leg. We anticipate that these findings will be essential for future research combining the in vivo experiments presented here with mouse genetics to understand crossed reflex pathways at the network level in vivo.NEW & NOTEWORTHY Insights into the mechanisms of crossed reflexes are essential for understanding coordinated leg movements that maintain stable locomotion. Advances in mouse genetics allow for the selective manipulation of spinal interneurons and provide opportunities to understand crossed reflexes. Crossed reflexes in mice, however, are poorly described. Here, we describe crossed reflex responses in mice initiated by stimulation of the common peroneal nerve, which serves as a starting point for investigating crossed reflexes at the cellular level.
Collapse
Affiliation(s)
- Olivier D. Laflamme
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marwan Ibrahim
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Ravbar P, Zhang N, Simpson JH. Behavioral evidence for nested central pattern generator control of Drosophila grooming. eLife 2021; 10:e71508. [PMID: 34936550 PMCID: PMC8694699 DOI: 10.7554/elife.71508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Central pattern generators (CPGs) are neurons or neural circuits that produce periodic output without requiring patterned input. More complex behaviors can be assembled from simpler subroutines, and nested CPGs have been proposed to coordinate their repetitive elements, organizing control over different time scales. Here, we use behavioral experiments to establish that Drosophila grooming may be controlled by nested CPGs. On a short time scale (5-7 Hz, ~ 200 ms/movement), flies clean with periodic leg sweeps and rubs. More surprisingly, transitions between bouts of head sweeping and leg rubbing are also periodic on a longer time scale (0.3-0.6 Hz, ~2 s/bout). We examine grooming at a range of temperatures to show that the frequencies of both oscillations increase-a hallmark of CPG control-and also that rhythms at the two time scales increase at the same rate, indicating that the nested CPGs may be linked. This relationship holds when sensory drive is held constant using optogenetic activation, but oscillations can decouple in spontaneously grooming flies, showing that alternative control modes are possible. Loss of sensory feedback does not disrupt periodicity but slow down the longer time scale alternation. Nested CPGs simplify the generation of complex but repetitive behaviors, and identifying them in Drosophila grooming presents an opportunity to map the neural circuits that constitute them.
Collapse
Affiliation(s)
- Primoz Ravbar
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Neil Zhang
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Julie H Simpson
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
7
|
Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021; 22:ijms22168511. [PMID: 34445216 PMCID: PMC8395195 DOI: 10.3390/ijms22168511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Olivier D. Laflamme
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences P09800, 2705 boul. Laurier, Québec, QC G1V 4G2, Canada; (M.L.); (L.T.); (O.D.L.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence:
| |
Collapse
|
8
|
Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK, Lane MA. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci 2021; 41:845-854. [PMID: 33472820 PMCID: PMC7880285 DOI: 10.1523/jneurosci.1654-20.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS. This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modulation of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a perspective for how treatments can optimize the contribution of interneurons to functional improvement.
Collapse
Affiliation(s)
| | - Victoria E Abraira
- Department of Cell Biology & Neuroscience, Rutgers University, The State University of New Jersey, New Jersey, 08854
| | - Kajana Satkunendrarajah
- Departments of Neurosurgery and Physiology, Medical College of Wisconsin, Wisconsin, 53226
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, 53295
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California, 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, 94143
| | | | - David S K Magnuson
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, 40208
| | - Michael A Lane
- Department of Neurobiology and Anatomy, and the Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, Pennsylvania, 19129
| |
Collapse
|
9
|
Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021; 22:1467. [PMID: 33540567 PMCID: PMC7867206 DOI: 10.3390/ijms22031467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Locomotion is a fundamental animal behavior required for survival and has been the subject of neuroscience research for centuries. In terrestrial mammals, the rhythmic and coordinated leg movements during locomotion are controlled by a combination of interconnected neurons in the spinal cord, referred as to the central pattern generator, and sensory feedback from the segmental somatosensory system and supraspinal centers such as the vestibular system. How segmental somatosensory and the vestibular systems work in parallel to enable terrestrial mammals to locomote in a natural environment is still relatively obscure. In this review, we first briefly describe what is known about how the two sensory systems control locomotion and use this information to formulate a hypothesis that the weight of the role of segmental feedback is less important at slower speeds but increases at higher speeds, whereas the weight of the role of vestibular system has the opposite relation. The new avenues presented by the latest developments in molecular sciences using the mouse as the model system allow the direct testing of the hypothesis.
Collapse
Affiliation(s)
- Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Science Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
10
|
Shon A, Brakel K, Hook M, Park H. Closed-Loop Plantar Cutaneous Augmentation by Electrical Nerve Stimulation Increases Ankle Plantarflexion During Treadmill Walking. IEEE Trans Biomed Eng 2021; 68:2798-2809. [PMID: 33497323 DOI: 10.1109/tbme.2021.3054564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ankle plantarflexion plays an important role in forward propulsion and anterior-posterior balance during locomotion. This component of gait is often critically impacted by neurotraumas and neurological diseases. We hypothesized that augmenting plantar cutaneous feedback, via closed-loop distal-tibial nerve stimulation, could increase ankle plantarflexion during walking. To test the hypothesis, one intact rat walked on a motorized treadmill with implanted electronic device and electrodes for closed-loop neural recording and stimulation. Constant-current biphasic electrical pulse train was applied to distal-tibial nerve, based on electromyogram recorded from the medial gastrocnemius muscle, to be timed with the stance phase. The stimulation current threshold to evoke plantar cutaneous feedback was set at 30 μA (1·T), based on compound action potential evoked by stimulation. The maximum ankle joint angle at plantarflexion, during the application of stimulation currents of 3.3·T and 6.6·T, respectively, was increased from 149.4° (baseline) to 165.4° and 161.6°. The minimum ankle joint angle at dorsiflexion was decreased from 59.4° (baseline) to 53.1°, during the application of stimulation currents of 3.3·T, but not changed by 6.6·T. Plantar cutaneous augmentation also changed other gait kinematic parameters. Stance duty factor was increased from 51.9% (baseline) to 65.7% and 64.0%, respectively, by 3.3·T and 6.6·T, primarily due to a decrease in swing duration. Cycle duration was consistently decreased by the stimulation. In the control trial after two stimulation trials, a strong after-effect was detected in overall gait kinematics as well as ankle plantarflexion, suggesting that this stimulation has the potential for producing long-term changes in gait kinematics.
Collapse
|
11
|
Abstract
In this tribute to Reggie Edgerton, I briefly review the spinal mechanisms that coordinate locomotion and the interaction between the different sensory mechanisms that help coordinate the locomotor movements and the central locomotor network. The step cycle has four distinct parts, the support phase, the lift off, the flexion phase, and, the most complex, the touch down, when the limb makes a smooth contact with ground again. Each of these phases is affected by different sensory mechanisms, which interact with the central network [central pattern generator (CPG)] generating the basic movements with its four components. Conversely, the CPG also gates the sensory reflex pathways, so that they are active only in a given phase of the step cycle, or even produces opposite effects in different parts of the step cycle. These different examples from mammals are most likely important also to consider for human locomotion and, in particular, in patients with spinal cord injury, partial or complete.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Akay T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020; 450:161-167. [PMID: 32422335 DOI: 10.1016/j.neuroscience.2020.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Traditionally, research aimed at the understanding of the sensory control of terrestrial mammalian locomotion has focused on cats as the animal model. But advances in molecular genetics and new methods to record movement in small animals have moved mice into the forefront of locomotor research. In this review article, I will first give an overview of what is known about sensory feedback control of locomotion, mainly emerged from experiments performed on cats. This overview will not be an exhaustive overview, but will rather aim to give a broad picture of what has been learned about the sensory control of locomotion using cats as the animal model. I will then give a brief summary of how the mouse is adding to these insights.
Collapse
Affiliation(s)
- Turgay Akay
- Dalhousie University, Dept. of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Halifax, NS, Canada.
| |
Collapse
|
13
|
Li EZ, Garcia-Ramirez DL, Dougherty KJ. Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice. Front Cell Neurosci 2019; 13:452. [PMID: 31649510 PMCID: PMC6794418 DOI: 10.3389/fncel.2019.00452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Central pattern generators (CPGs) in the thoracolumbar spinal cord generate the basic hindlimb locomotor pattern. The locomotor CPG integrates descending commands and sensory information from the periphery to activate, modulate and halt the rhythmic program. General CPG function and response to sensory perturbations are well described in cat and rat models. In mouse, roles for many genetically identified spinal interneurons have been inferred from locomotor alterations following population deletion or modulation. However, the organization of afferent input to specific genetically identified populations of spinal CPG interneurons in mouse remains comparatively less resolved. Here, we focused on a population of CPG neurons marked by the transcription factor Shox2. To directly test integration of afferent signaling by Shox2 neurons, sensory afferents were stimulated during patch clamp recordings of Shox2 neurons in isolated spinal cord preparations from neonatal mice. Shox2 neurons broadly displayed afferent-evoked currents at multiple segmental levels, particularly from caudal dorsal roots innervating distal hindlimb joints. As dorsal root stimulation may activate both flexor- and extensor-related afferents, preparations preserving peripheral nerves were used to provide more specific activation of ankle afferents. We found that both flexor- and extensor-related afferent stimulation were likely to evoke similar currents in a given Shox2 neuron, as assessed by response polarity, latency, duration and amplitude. It has been proposed that Shox2 neurons can be divided into neurons which contribute to rhythm generation and neurons that are premotor by the absence and presence of the V2a marker Chx10, respectively. Response to afferent stimulation did not differ based on Chx10 expression. Although currents evoked in response to flexor and extensor afferent activation did not follow expected functional antagonism, they were consistent with the observation that stimulation of flexor- and extensor-related afferents both reset the phase of ongoing fictive locomotion to flexion in neonatal mice. Together, the data suggest that Shox2 neurons are interposed in multiple sensory pathways and low threshold proprioceptive input reinforces sensory perturbation of ongoing locomotion by similarly activating or inhibiting both the rhythm and patterning layers of the CPG.
Collapse
Affiliation(s)
- Erik Z Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - D Leonardo Garcia-Ramirez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
14
|
Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev 2019; 100:271-320. [PMID: 31512990 DOI: 10.1152/physrev.00015.2019] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
15
|
Büschges A. Connecting the micro with the macro level in motor control: unravelling general sensory influences on leg stepping. J Physiol 2019; 597:2971-2972. [PMID: 31054262 DOI: 10.1113/jp278031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ansgar Büschges
- Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47B, D-50674, Cologne, Germany
| |
Collapse
|
16
|
Santuz A, Akay T, Mayer WP, Wells TL, Schroll A, Arampatzis A. Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles. J Physiol 2019; 597:3147-3165. [DOI: 10.1113/jp277515] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Alessandro Santuz
- Department of Training and Movement SciencesHumboldt‐Universität zu Berlin 10115 Berlin Germany
- Berlin School of Movement ScienceHumboldt‐Universität zu Berlin 10115 Berlin Germany
- Atlantic Mobility Action ProjectBrain Repair CentreDepartment of Medical NeuroscienceDalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Turgay Akay
- Atlantic Mobility Action ProjectBrain Repair CentreDepartment of Medical NeuroscienceDalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - William P. Mayer
- Atlantic Mobility Action ProjectBrain Repair CentreDepartment of Medical NeuroscienceDalhousie University Halifax Nova Scotia B3H 4R2 Canada
- Department of MorphologyFederal University of Espirito Santo Vitoria CEP 29040–090 Brazil
| | - Tyler L. Wells
- Atlantic Mobility Action ProjectBrain Repair CentreDepartment of Medical NeuroscienceDalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arno Schroll
- Department of Training and Movement SciencesHumboldt‐Universität zu Berlin 10115 Berlin Germany
- Berlin School of Movement ScienceHumboldt‐Universität zu Berlin 10115 Berlin Germany
| | - Adamantios Arampatzis
- Department of Training and Movement SciencesHumboldt‐Universität zu Berlin 10115 Berlin Germany
- Berlin School of Movement ScienceHumboldt‐Universität zu Berlin 10115 Berlin Germany
| |
Collapse
|
17
|
Dougherty KJ, Ha NT. The rhythm section: An update on spinal interneurons setting the beat for mammalian locomotion. CURRENT OPINION IN PHYSIOLOGY 2019; 8:84-93. [PMID: 31179403 PMCID: PMC6550992 DOI: 10.1016/j.cophys.2019.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To initiate and support locomotion, rhythm generating neurons in the spinal central pattern generator convert descending input into a rhythmic signal which is conveyed to downstream neurons, leading to the recruitment of motor neurons and activation of muscles. Although two genetically-defined neuronal populations have been linked to rhythm generation, a single all-inclusive rhythm generating population has yet to be identified. Here, we consolidate recent work aimed at identifying rhythm generating neurons, summarize the evidence for the involvement of two neuronal populations in rhythm generation, describe the challenges in identifying a marker for rhythm generating neurons, and discuss potential directions to take in integrating spinal rhythm generating neurons into recently identified speed-dependent locomotor circuits.
Collapse
Affiliation(s)
- Kimberly J. Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ngoc T. Ha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
18
|
Koch SC. Motor task-selective spinal sensorimotor interneurons in mammalian circuits. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Mayer WP, Murray AJ, Brenner-Morton S, Jessell TM, Tourtellotte WG, Akay T. Role of muscle spindle feedback in regulating muscle activity strength during walking at different speed in mice. J Neurophysiol 2018; 120:2484-2497. [PMID: 30133381 DOI: 10.1152/jn.00250.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.
Collapse
Affiliation(s)
- William P Mayer
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada.,Department of Morphology, Federal University of Espirito Santo , Vitoria , Brazil
| | - Andrew J Murray
- Sainsbury Wellcome Center for Neural Circuits and Behaviour, University College London , London , United Kingdom
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Department of Neuroscience, Columbia University , New York, New York
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedar Sinai Medical Center, West Hollywood, California
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Center, Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|