1
|
Negrete B, Ackerly KL, Esbaugh AJ. Hypoxia-acclimation adjusts skeletal muscle anaerobic metabolism and burst swim performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111734. [PMID: 39216551 DOI: 10.1016/j.cbpa.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Red drum, Sciaenops ocellatus, are a marine teleost native to the Gulf of Mexico that routinely experiences periods of low oxygen (hypoxia). Recent work has demonstrated this species has the capacity to improve aerobic performance in hypoxia through respiratory acclimation. However, it remains unknown how hypoxia acclimation impacts anaerobic metabolism in red drum, and the consequences of exhaustive exercise and recovery. Juvenile fish were acclimated to normoxia (n = 15, DO 90.4 ± 6.42 %) or hypoxia (n = 15, DO 33.6 ± 7.2 %) for 8 days then sampled at three time points: at rest, after exercise, and after a 3 h recovery period. The resting time point was used to characterize the acclimated phenotype, while the remaining time points demonstrate how this phenotype responds to exhaustive exercise. Whole blood, red muscle, white muscle, and heart tissues were sampled for metabolites and enzyme activity. The resting phenotype was characterized by lower pHe and changes to skeletal muscle ATP. Exhaustive exercise increased muscle lactate, and decreased phosphocreatine and ATP with no effect of acclimation. Interestingly, hypoxia-acclimated fish had higher pHe and pHi than control in all exercise time points. Red muscle ATP was lower in hypoxia-acclimated fish versus control at each sample period. Moreover, acclimated fish increased lactate dehydrogenase activity in the red muscle. Hypoxia acclimation increased white muscle ATP and hexokinase activity, a glycolytic enzyme. In a gait-transition swim test, hypoxia-acclimated fish recruited anaerobic-powered burst swimming at lower speeds in normoxia compared to control fish. These data suggest that acclimation increases reliance on anaerobic metabolism, and does not benefit recovery from exhaustive exercise.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
2
|
Reed MR, Minicozzi MR. Effects of caudal fin size on tail-flip jump performance. ZOOLOGY 2024; 162:126145. [PMID: 38232499 DOI: 10.1016/j.zool.2024.126145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Fishes are generally considered to be fully aquatic, but some voluntarily strand themselves on land to escape poor water conditions, predators, or to exploit terrestrial niches. The tail-flip jump is a method of terrestrial locomotion performed by small fishes without apparent morphological specialization, but few studies have investigated the role the caudal fin has on the tail-flip jump. We hypothesized that fish with larger caudal fins would perform shorter individual tail-flip jumps and not be able to sustain jumping in extended terrestrial excursions. Zebrafish (Danio rerio) are an excellent model to investigate this because these fish perform the tail-flip jump and some strains have been selectively bred in the pet trade industry for larger fins. In this study, wildtype and longfin zebrafish were compared because of the larger caudal fins of the longfin zebrafish. Individuals of each strain performed three consecutive jump trials with 48 h between each trial: kinematic, voluntary, and exhaustion. The kinematic trial used a high-speed camera to measure kinematic variables of individual jumps. The voluntary trial recorded each fish's voluntary response to stranding for three minutes. The exhaustion trial recorded the fish's response to be constantly elicited to jump until exhaustion was reached. Despite differences in caudal fin area, there were no differences in the kinematic characteristics of individual jump performances, including jump distance. However, wildtype zebrafish performed more jumps, jumped more than they flopped, and moved a greater total distance in both voluntary and exhaustion trials despite moving for similar durations and reaching exhaustion at similar times. These findings imply that larger fins do not affect a fish's ability to perform individual tail-flip jumps but does cause fish to employ different behavioral strategies when stranded for longer durations on land.
Collapse
Affiliation(s)
- Makenzie R Reed
- Minnesota State University Mankato, Department of Biological Sciences, 242 Trafton Science Center South, Mankato, MN 56001, United States
| | - Michael R Minicozzi
- Minnesota State University Mankato, Department of Biological Sciences, 242 Trafton Science Center South, Mankato, MN 56001, United States.
| |
Collapse
|
3
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
4
|
Lutek K, Donatelli CM, Standen EM. Patterns and processes in amphibious fish: biomechanics and neural control of fish terrestrial locomotion. J Exp Biol 2022; 225:275243. [PMID: 35502693 DOI: 10.1242/jeb.242395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphibiousness in fishes spans the actinopterygian tree from the earliest to the most recently derived species. The land environment requires locomotor force production different from that in water, and a diversity of locomotor modes have evolved across the actinopterygian tree. To compare locomotor mode between species, we mapped biomechanical traits on an established amphibious fish phylogeny. Although the diversity of fish that can move over land is large, we noted several patterns, including the rarity of morphological and locomotor specialization, correlations between body shape and locomotor mode, and an overall tendency for amphibious fish to be small. We suggest two idealized empirical metrics to consider when gauging terrestrial 'success' in fishes and discuss patterns of terrestriality in fishes considering biomechanical scaling, physical consequences of shape, and tissue plasticity. Finally, we suggest four ways in which neural control could change in response to a novel environment, highlighting the importance and challenges of deciphering when these control mechanisms are used. We aim to provide an overview of the diversity of successful amphibious locomotion strategies and suggest several frameworks that can guide the study of amphibious fish and their locomotion.
Collapse
Affiliation(s)
- K Lutek
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - C M Donatelli
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| | - E M Standen
- Department of Biology, University of Ottawa, Ottawa, Canada, K1N 6N5
| |
Collapse
|
5
|
Turko AJ, Rossi GS, Wright PA. More than Breathing Air: Evolutionary Drivers and Physiological Implications of an Amphibious Lifestyle in Fishes. Physiology (Bethesda) 2021; 36:307-314. [PMID: 34431416 DOI: 10.1152/physiol.00012.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amphibious and aquatic air-breathing fishes both exchange respiratory gasses with the atmosphere, but these fishes differ in physiology, ecology, and possibly evolutionary origins. We introduce a scoring system to characterize interspecific variation in amphibiousness and use this system to highlight important unanswered questions about the evolutionary physiology of amphibious fishes.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Rossi GS, Cochrane PV, Wright PA. Fluctuating environments during early development can limit adult phenotypic flexibility: insights from an amphibious fish. J Exp Biol 2020; 223:jeb228304. [PMID: 32616545 DOI: 10.1242/jeb.228304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
7
|
Turko AJ, Cisternino B, Wright PA. Calcified gill filaments increase respiratory function in fishes. Proc Biol Sci 2020; 287:20192796. [PMID: 32075528 DOI: 10.1098/rspb.2019.2796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The morphology of fish gills is closely linked to aerobic capacity and tolerance of environmental stressors such as hypoxia. The importance of gill surface area is well studied, but little is known about how the mechanical properties of gill tissues determine function. In some fishes, the bases of the gill filaments are surrounded by a calcified 'sheath' of unknown function. We tested two non-exclusive hypotheses: (i) calcified gill filaments enhance water flow through the gill basket, improving aquatic respiratory function, and (ii) in amphibious fishes, calcification provides support for gills out of water. In a survey of more than 100 species of killifishes and related orders, we found filament calcification was widespread and thus probably arose before the evolution of amphibious lifestyles in killifishes. Calcification also did not differ between amphibious and fully aquatic species, but terrestrial acclimation caused calcium deposition on the filaments of the killifish Kryptolebias marmoratus, suggesting a possible structural role when out of water. We found strong evidence supporting a role for filament calcification in enhancing aquatic respiratory function. First, acclimation to increased respiratory demands (hypoxia, elevated temperatures) induced calcium deposition on the filaments of K. marmoratus. Next, gentle removal of filament calcification decreased branchial resistance to water flow, indicating disruption of gill basket positioning. Thus, the mechanical properties of the gill filaments appear to play an important and previously unappreciated role in determining fish respiratory function.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Bianca Cisternino
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
8
|
Rossi GS, Wright PA. Hypoxia-seeking behavior, metabolic depression and skeletal muscle function in an amphibious fish out of water. ACTA ACUST UNITED AC 2020; 223:jeb.213355. [PMID: 31767733 DOI: 10.1242/jeb.213355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Several animals enter a state of dormancy to survive harsh environmental conditions. During dormancy, metabolic depression can be critical for economizing on limited endogenous energy reserves. We used two isogenic strains (strain 1 and strain 2) of a self-fertilizing amphibious fish (Kryptolebias marmoratus) to test the hypothesis that animals seek hypoxic microhabitats that, in turn, accentuate metabolic depression during dormancy. Using custom-built tunnels that maintained a longitudinal O2 gradient (hypoxic to normoxic), we assessed the O2 preference of K. marmoratus during prolonged air exposure. In support of our hypothesis, we found that one isogenic strain (strain 2) spent more time in hypoxia compared with normoxia after 21 days in air. Prolonged air exposure in both strains resulted in lower O2 consumption rates compared with active fish (35% depression), which was accentuated (51% depression) when fish were exposed to aerial hypoxia acutely. We then tested the hypothesis that chronic aerial hypoxia acclimation would protect endogenous energy reserves and skeletal muscle integrity, thereby maintaining locomotor performance, possibly owing to hypoxic hypometabolism. We found that air-acclimated fish from both strains were in poorer body condition relative to fish acclimated to aerial hypoxia. Furthermore, aerial hypoxia acclimation minimized glycogen usage (strain 1), lipid catabolism (strain 2) and white muscle atrophy (strain 2), as well as preserved terrestrial locomotor performance compared with fish in air (strain 2). Overall, our findings suggest that some K. marmoratus strains seek microhabitats that accentuate metabolic depression during dormancy, and that microhabitat O2 availability may have significant implications for energy metabolism, and the structure and function of skeletal muscle. Furthermore, the differential responses between isogenic strains suggests that genetic factors also contribute to phenotypic differences in the emersion behavior and physiology of this species.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
9
|
McFarlane W, Rossi GS, Wright PA. Amphibious fish 'get a jump' on terrestrial locomotor performance after exercise training on land. ACTA ACUST UNITED AC 2019; 222:jeb.213348. [PMID: 31570512 DOI: 10.1242/jeb.213348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Many amphibious fishes rely on terrestrial locomotion to accomplish essential daily tasks, but it is unknown whether terrestrial exercise improves the locomotor performance of fishes on land. Thus, we tested the hypothesis that terrestrial exercise improves locomotion in amphibious fishes out of water as a result of skeletal muscle remodeling. We compared the jumping performance of Kryptolebias marmoratus before and after an exercise training regimen, and assessed the muscle phenotype of control and exercise-trained fish. We found that exercise-trained fish jumped 41% farther and 48% more times before reaching exhaustion. Furthermore, exercise training resulted in the hypertrophy of red muscle fibers, and an increase in red muscle capillarity and aerobic capacity. Lactate accumulation after jumping indicates that white muscle is also important in powering terrestrial jumps. Overall, skeletal muscle in K. marmoratus is highly responsive to terrestrial exercise, and muscle plasticity may assist in the effective exploitation of terrestrial habitats by amphibious fishes.
Collapse
Affiliation(s)
- William McFarlane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
10
|
Rossi GS, Cochrane PV, Tunnah L, Wright PA. Ageing impacts phenotypic flexibility in an air-acclimated amphibious fish. J Comp Physiol B 2019; 189:567-579. [PMID: 31520114 DOI: 10.1007/s00360-019-01234-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
The ability to tolerate environmental change may decline as fishes age. We tested the hypothesis that ageing influences the scope for phenotypic flexibility in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between two vastly different environments, water and land. We found that older fish (4-6 years old) exhibited marked signs of ageing; older fish were reproductively senescent, had reduced fin regenerative capacity and body condition, and exhibited atrophy of both oxidative and glycolytic muscle fibers relative to younger adult fish (1-2 years old). However, age did not affect routine O2 consumption. We then acclimated adult fish (1-6 years) to water (control) or air for 10 days to assess the scope for phenotypic flexibility in response to terrestrial exposure. In support of our hypothesis, we found that older air-acclimated fish had a diminished scope for gill remodeling relative to younger fish. We also found that older fish exhibited poorer terrestrial locomotor performance relative to younger adult fish, particularly when acclimated to air. Our results indicate that ageing diminishes skeletal muscle integrity and locomotor performance of amphibious fishes, and may, therefore, impair terrestrial foraging ability, predator avoidance, or dispersal across the terrestrial environment. Remarkably, older fish voluntarily left water to a similar degree as younger fish despite the age-related deterioration of traits important for terrestrial life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Louise Tunnah
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|