1
|
Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C, Green NF, Marshall NJ, Cortesi F. Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. J Exp Biol 2022; 225:jeb243907. [PMID: 35244167 PMCID: PMC9080752 DOI: 10.1242/jeb.243907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jemma Hudson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abigail Shaughnessy
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cedric van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Green NF, Guevara E, Osorio DC, Endler JA, Marshall NJ, Vorobyev M, Cheney KL. Color discrimination thresholds vary throughout color space in a reef fish (Rhinecanthus aculeatus). J Exp Biol 2022; 225:274644. [PMID: 35258087 PMCID: PMC9080749 DOI: 10.1242/jeb.243533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Animal use color vision in a range of behaviours. Visual performance is limited by thresholds, which are set by noise in photoreceptors and subsequent neural processing. The receptor noise limited (RNL) model of color discrimination is widely used for modelling color vision and accounts well for experimental data from many species. In one of the most comprehensive tests yet of color discrimination in a non-human species, we using Ishihara-style stimulus patterns to examine thresholds for 21 directions at five locations in color space for the fish Rhineacanthus aculeatus. Thresholds matched RNL model predictions most closely for stimuli near to the the achromatic point, but exceeded predictions (indicating a decline in sensitivity) with distance from this point. Thresholds were also usually higher for saturation than for hue differences. These changes in color threshold with color space location and direction may give insight into photoreceptor non-linearities and post-receptoral mechanisms of color vision in fish. Our results highlight the need for a cautious interpretation of the RNL model - especially for modelling colours that differ from one another in saturation (rather than hue), and especially for highly saturated colours distant from the achromatic point in colour space.
Collapse
Affiliation(s)
- Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Emily Guevara
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Daniel C Osorio
- School of Life Sciences, The University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, 3216, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Misha Vorobyev
- Department of Optometry and Vision Science, The University of Auckland, Auckland 1142, New Zealand
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Torres-Dowdall J, Karagic N, Härer A, Meyer A. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Mol Ecol 2021; 30:1880-1891. [PMID: 33619757 DOI: 10.1111/mec.15855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
The visual system of vertebrates has greatly contributed to our understanding of how different molecular mechanisms shape adaptive phenotypic diversity. Extensive work on African cichlid fishes has shown how variation in opsin gene expression mediates diversification as well as convergent evolution in colour vision. This trait has received less attention in Neotropical cichlids, the sister lineage to African cichlids, but the work done so far led to the conclusion that colour vision is much less variable in Neotropical species. However, as only few taxa have been investigated and as recent work found contradicting patterns, the diversity in meotropical cichlids might be greatly underestimated. Here, we survey patterns of opsin gene expression in 35 representative species of Neotropical cichlids, revealing much more variation than previously known. This diversity can be attributed to two main mechanisms: (i) differential expression of the blue-sensitive sws2a, the green-sensitive rh2a, and the red-sensitive lws opsin genes, and (ii) simultaneous expression of up to five opsin genes, instead of only three as commonly found, in a striking dorsoventral pattern across the retina. This intraretinal variation in opsin genes expression results in steep gradients in visual sensitivity that may represent a convergent adaptation to clear waters with broad light environments. These results highlight the role and flexibility of gene expression in generating adaptive phenotypic diversification.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Härer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Powell SB, Mitchell LJ, Phelan AM, Cortesi F, Marshall J, Cheney KL. A five‐channel LED display to investigate UV perception. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samuel B. Powell
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
| | - Laurie J. Mitchell
- School of Biological Sciences The University of Queensland St Lucia Qld Australia
| | - Amelia M. Phelan
- School of Biological Sciences The University of Queensland St Lucia Qld Australia
| | - Fabio Cortesi
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
| | - Justin Marshall
- Queensland Brain Institute The University of Queensland St Lucia Qld Australia
| | - Karen L. Cheney
- School of Biological Sciences The University of Queensland St Lucia Qld Australia
| |
Collapse
|
5
|
van den Berg CP, Hollenkamp M, Mitchell LJ, Watson EJ, Green NF, Marshall NJ, Cheney KL. More than noise: context-dependent luminance contrast discrimination in a coral reef fish ( Rhinecanthus aculeatus). J Exp Biol 2020; 223:jeb232090. [PMID: 32967998 DOI: 10.1242/jeb.232090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023]
Abstract
Achromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal's visual system. Such thresholds are often estimated using the receptor noise limited model (RNL). However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested. Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. 'Dark' and 'bright' spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed lower thresholds for spots darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber-Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context dependent and should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Cedric P van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michelle Hollenkamp
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laurie J Mitchell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Erin J Watson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Carleton KL, Yourick MR. Axes of visual adaptation in the ecologically diverse family Cichlidae. Semin Cell Dev Biol 2020; 106:43-52. [PMID: 32439270 PMCID: PMC7486233 DOI: 10.1016/j.semcdb.2020.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
The family Cichlidae contains approximately 2000 species that live in diverse freshwater habitats including murky lakes, turbid rivers, and clear lakes from both the Old and New Worlds. Their visual systems are similarly diverse and have evolved specific sensitivities that differ along several axes of variation. Variation in cornea and lens transmission affect which wavelengths reach the retina. Variation in photoreceptor number and distribution affect brightness sensitivity, spectral sensitivity and resolution. Probably their most dynamic characteristic is the variation in visual pigment peak sensitivities. Visual pigments can be altered through changes in chromophore, opsin sequence and opsin expression. Opsin expression varies by altering which of the seven available cone opsins in their genomes are turned on. These opsins can even be coexpressed to produce seemingly infinitely tunable cone sensitivities. Both chromophore and opsin expression can vary on either rapid (hours or days), slower (seasonal or ontogenetic) or evolutionary timescales. Such visual system shifts have enabled cichlids to adapt to different habitats and foraging styles. Through both short term plasticity and longer evolutionary adaptations, cichlids have proven to be ecologically successful and an excellent model for studying organismal adaptation.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
7
|
Santiago C, Green NF, Hamilton N, Endler JA, Osorio DC, Marshall NJ, Cheney KL. Does conspicuousness scale linearly with colour distance? A test using reef fish. Proc Biol Sci 2020; 287:20201456. [PMID: 32933449 DOI: 10.1098/rspb.2020.1456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To be effective, animal colour signals must attract attention-and therefore need to be conspicuous. To understand the signal function, it is useful to evaluate their conspicuousness to relevant viewers under various environmental conditions, including when visual scenes are cluttered by objects of varying colour. A widely used metric of colour difference (ΔS) is based on the receptor noise limited (RNL) model, which was originally proposed to determine when two similar colours appear different from one another, termed the discrimination threshold (or just noticeable difference). Estimates of the perceptual distances between colours that exceed this threshold-termed 'suprathreshold' colour differences-often assume that a colour's conspicuousness scales linearly with colour distance, and that this scale is independent of the direction in colour space. Currently, there is little behavioural evidence to support these assumptions. This study evaluated the relationship between ΔS and conspicuousness in suprathreshold colours using an Ishihara-style test with a coral reef fish, Rhinecanthus aculeatus. As our measure of conspicuousness, we tested whether fish, when presented with two colourful targets, preferred to peck at the one with a greater ΔS - from the average distractor colour. We found the relationship between ΔS and conspicuousness followed-- a sigmoidal function, with high ΔS colours perceived as equally conspicuous. We found that the relationship between ΔS and conspicuousness varied across colour space (i.e. for different hues). The sigmoidal detectability curve was little affected by colour variation in the background or when colour distance was calculated using a model that does not incorporate receptor noise. These results suggest that the RNL model may provide accurate estimates for perceptual distance for small suprathreshold distance colours, even in complex viewing environments, but must be used with caution with perceptual distances exceeding- -10 ΔS.
Collapse
Affiliation(s)
- Carl Santiago
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072 Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Nadia Hamilton
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Daniel C Osorio
- School of Life Sciences, The University of Sussex, Brighton BN1 9QG, UK
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072 Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
8
|
Schneider RF, Rometsch SJ, Torres-Dowdall J, Meyer A. Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Mol Ecol 2020; 29:1476-1493. [PMID: 32215986 DOI: 10.1111/mec.15416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Cichlid fishes' famous diversity in body coloration is accompanied by a highly diverse and complex visual system. Although cichlids possess an unusually high number of seven cone opsin genes, they express only a subset of these during their ontogeny, accounting for their astonishing interspecific variation in visual sensitivities. Much of this diversity is thought to have been shaped by natural selection as cichlids inhabit a variety of habitats with distinct light environments. Also, sexual selection might have contributed to the observed visual diversity, and sexual dimorphism in coloration potentially co-evolved with sexual dimorphism in opsin expression. We investigated sex-specific opsin expression of several cichlids from Africa and the Neotropics and collected and integrated data sets on sex-specific body coloration, species-specific visual sensitivities, lens transmission and habitat light properties for some of them. We comparatively analysed this wide range of molecular and ecological data, illustrating how integrative approaches can address specific questions on the factors and mechanisms driving diversification, and the evolution of cichlid vision in particular. We found that both sexes expressed opsins at the same levels-even in sexually dimorphic cichlid species-which argues against coevolution of sexual dichromatism and differences in sex-specific visual sensitivity. Rather, a combination of environmental light properties and body coloration shaped the diversity in spectral sensitivities among cichlids. We conclude that although cichlids are particularly colourful and diverse and often sexually dimorphic, it would appear that natural rather than sexual selection is a more powerful force driving visual diversity in this hyperdiverse lineage.
Collapse
Affiliation(s)
- Ralph F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Marine Ecology, GEOMAR, Kiel, Germany
| | - Sina J Rometsch
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julián Torres-Dowdall
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|