1
|
Field EK, Terry J, Hartzheim AM, Krajcir K, Mullin SJ, Neuman-Lee LA. Investigating relationships among stress, reproduction, and immunity in three species of watersnake. Gen Comp Endocrinol 2023; 343:114350. [PMID: 37524232 DOI: 10.1016/j.ygcen.2023.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Energy is a finite resource required for all physiological processes and must be allocated efficiently among essential activities to ensure fitness and survival. During the active season, adult organisms are expected to prioritize investment in reproduction over other energetically expensive processes, such as responding to immunological challenges. Furthermore, when encountering a stressor, the balance between reproduction and immunity might be disrupted in order to fuel the stress response. Because of the distinct differences in life histories across species, watersnakes provide a unique group of study in which to examine these tradeoffs. Over a two-year period, we captured three watersnake species throughout Northeast Arkansas. Animals were subjected to restraint stress and blood samples were collected throughout the acute stress response. Blood samples were used to assess innate immunity and steroid hormone concentrations. We found the peak in corticosterone concentration is season-specific, potentially because energetic reserves fluctuate with reproductive activities. We also found body condition was positively related to acute stress and negatively related to immunity. Watersnakes evidently prioritize reproduction over immunity, especially during the energetically intensive process of vitellogenesis. Energetic tradeoffs between reproduction, immunity, and the stress response are complex, and this study contributes to our understanding of energetic shifts in free-living organisms in the context of stress.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Mississippi Department of Wildlife, Fisheries, and Parks, Mississippi Museum of Natural Science, Jackson MS, United States.
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Alyssa M Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | - Kevin Krajcir
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States; Arkansas Natural Heritage Commission, Little Rock, AR, United States
| | - Stephen J Mullin
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States.
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States.
| |
Collapse
|
2
|
Hartzheim AM, Terry JL, Field EK, Haydt NT, Poo S, Neuman-Lee LA. Immune and stress physiology of two captively-housed tortoise species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:220-233. [PMID: 36450699 DOI: 10.1002/jez.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Ecoimmunology affords us the ability to better understand immunological processes through consideration of external factors, such as the thermal microenvironment. This consideration is imperative when examining the immunological processes of ectothermic organisms like reptiles. Reptiles uniquely rely heavily on their innate immune function but remain poorly understood in immunological studies. In this study, we examined innate immunity in two zoo-housed tortoise species, the Indian star tortoise (Geochelone elegans, Schoepff, 1795) and northern spider tortoise (Pyxis arachnoides brygooi, Vuillemin & Domergue, 1972). Bacterial killing assays (BKAs) were optimized and used to assess the monthly immunocompetence of these tortoises to three different bacteria: Escherichia coli, Salmonella enterica, and Staphylococcus aureus. We evaluated differences in blood biochemistry values (lactate and glucose) among months and species as well as fecal corticosterone (CORT) between species. Lastly, we examined the potential influences of individual thermal microenvironments on bactericidal ability. Both G. elegans and P. a. brygooi demonstrated immunocompetence against all bacterial challenges, but only bactericidal ability against E. coli varied over months. Optimal BKA serum dilutions, blood glucose levels, and fecal CORT concentrations differed between the two species. Finally, there was evidence that the thermal microenvironment influenced the tortoises' bactericidal ability against E. coli. Through use of nonmodel organisms, such as tortoises, we are given insight into the inner workings of innate immunity and a better understanding of the complexities of the vertebrate immune system.
Collapse
Affiliation(s)
- Alyssa M Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Jennifer L Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Natalie T Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Sinlan Poo
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
3
|
C de Figueiredo A, A K Nogueira L, C M Titon S, R Gomes F, E de Carvalho J. Immune and hormonal regulation of the Boa constrictor (Serpentes; Boidae) in response to feeding. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111119. [PMID: 34793953 DOI: 10.1016/j.cbpa.2021.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Feeding upregulates immune function and the systemic and local (gastrointestinal tract) concentrations of some immunoregulatory hormones, as corticosterone (CORT) and melatonin (MEL), in mammals and anurans. However, little is known about the immune and hormonal regulation in response to feeding in other ectothermic vertebrates, especially snakes, in which the postprandial metabolic changes are pronounced. Here, we investigated the effects feeding have on hormonal and innate immune responses in the snake, Boa constrictor. We divided juvenile males into two groups: fasting and fed with mice (30% of body mass). We measured the rates of oxygen consumption, plasma CORT levels, heterophil/lymphocyte ratio (HL ratio), plasma bacterial killing ability (BKA), and stomach and intestine MEL in fasting snakes and 48 h after meal intake. We observed increased rates of oxygen consumption, plasma CORT levels, and HL ratio, along with a tendency of decreased stomach and intestine MEL in fed snakes compared to fasting ones. BKA was not affected by feeding. Overall, we found that feeding modulates metabolic rates, CORT levels, and immune cell distribution in boas. Increased baseline CORT may be important to mobilize energy to support the metabolic increment during the postprandial period. Increased HL ratio might be an immunoregulatory effect of increased CORT, which has been shown in different physiological situations such as in response to immune challenge. Our results suggest that feeding activates the hypothalamic-pituitary-adrenal axis and modulates immune cell redistribution, possibly contributing to fighting potential injuries and infections derived from predation and from pathogens present in ingested food.
Collapse
Affiliation(s)
- Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | - Letícia A K Nogueira
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - José E de Carvalho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, CEP 09972-270, Diadema, SP, Brazil
| |
Collapse
|
4
|
Bakewell L, Kelehear C, Graham S. Impacts of temperature on immune performance in a desert anuran (
Anaxyrus punctatus
). J Zool (1987) 2021. [DOI: 10.1111/jzo.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Li S, Li J, Chen W, Xu Z, Xie L, Zhang Y. Effects of Simulated Heat Wave on Oxidative Physiology and Immunity in Asian Yellow Pond Turtle (Mauremys mutica). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Global warming has led to an increase in the frequency, duration, and intensity of heat waves in the summer, which can cause frequent and acute heat stress on ectotherms. Thus, determining how ectothermic animals respond to heat waves has been attracting growing interest among ecologists. However, the physiological and biochemical responses to heat waves in reptiles, especially aquatic reptiles, are still poorly understood. The current study investigated the oxidant physiology, immunity, and expression levels of heat shock proteins (HSP) mRNA after exposure to a simulated heat wave (1 week, 35 ± 4°C), followed by a recovery period (1 week, 28 ± 4°C) in juvenile Asian yellow pond turtle (Mauremys mutica), a widely farmed aquatic turtle in East Asia. The contents of malondialdehyde (MDA) in the liver and muscle were not significantly affected by the heat wave or recovery. Of all antioxidant enzymes, only the activity of glutathione peroxidase (GSH-Px) in muscles increased after heat wave, while the total superoxide dismutase (T-SOD), catalase activity (CAT), and total antioxidant capacity (T-AOC) did not change during the study. The organo-somatic index for the liver and spleen of M. mutica decreased after the heat wave but increased to the initial level after recovery. In contrast, plasma lysozyme activity and serum complement C4 levels increased after the heat wave, returning to the control level after recovery. In addition, heat waves did not alter the relative expression of HSP60, HSP70, and HSP90 mRNA in the liver. Eventually, heat wave slightly increased the IBR/n index. Therefore, our results suggested that heat waves did not lead to oxidative damage to lipids in M. mutica, but deleteriously affected the turtles’ immune organs. Meanwhile, the constitutive levels of most antioxidative enzyme activities, HSPs and enhanced blood immune functions might protect the turtles from the threat of heat waves under the current climate scenarios.
Collapse
|
6
|
Madelaire CB, Zena LA, Dillon D, Silva DP, Hunt KE, Loren Buck C, Bícego KC, Gomes FR. Who rules over immunology? Sseasonal variation in body temperature,, steroid hormones, and immune variables in a tegu lizard. Integr Comp Biol 2021; 61:1867-1880. [PMID: 34022037 DOI: 10.1093/icb/icab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple factors can influence the immune response of ectothermic vertebrates, including body temperature, gonadal steroids, and seasonality, in ways that are thought to reflect trade-offs between energetic investment in immunity vs. reproduction. Hibernating tegu lizards (Salvator merianae) are a unique model to investigate how immunocompetence might be influenced by different factors during their annual cycle. We assessed immunological measures (plasma bacterial killing ability, total and differential leukocyte count), plasma hormone levels (testosterone in males, estradiol and progesterone in females, and corticosterone in both sexes), body temperature, and body condition from adult tegus during each stage of their annual cycle: reproduction, post-reproduction/preparation for hibernation, and hibernation. Our hypothesis that immune traits present higher values during the reproductive phase, and a sharp decrease during hibernation, was partially supported. Immune variables did not change between life history stages, except for total number of leukocytes, which was higher at the beginning of the reproductive season (September) in both males and females. Average body temperature of the week prior to sampling was positively correlated with number of eosinophils, basophils, monocytes and azurophils, corroborating other studies showing that when animals maintain a high Tb, there is an increase in immune activity. Surprisingly, no clear relationship between immune traits and gonadal steroids or corticosterone levels was observed, even when including life history stage in the model. When gonadal hormones peaked in males and females, heterophil:lymphocyte ratio (which often elevates during physiological stress) also increased. Additionally, we did not observe any trade-off between reproduction and immunity traits, sex differences in immune traits or a correlation between body condition and immune response. Our results suggest that variation in patterns of immune response and correlations with body condition and hormone secretion across the year can depend upon the specific hormone and immune trait, and that experienced Tb is an important variable determining immune response in ectotherms.
Collapse
Affiliation(s)
- Carla B Madelaire
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA.,Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil
| | - Lucas A Zena
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA.,Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil.,Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - Diego P Silva
- Smithsonian-Mason School of Conservation & George Mason University, 1500 Remount Rd, Front Royal, VA, 22630, USA
| | - Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
7
|
Titon SCM, Assis VR. Introduction to the special issue: Ecoimmunology in ectotherms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:697-705. [PMID: 33450144 DOI: 10.1002/jez.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanny C M Titon
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vania R Assis
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Hudson SB, Lidgard AD, French SS. Glucocorticoids, energy metabolites, and immunity vary across allostatic states for plateau side‐blotched lizards (
Uta stansburiana uniformis
) residing in a heterogeneous thermal environment. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:732-743. [DOI: 10.1002/jez.2415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Spencer B. Hudson
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | | | - Susannah S. French
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|