1
|
Kadamani KL, Rahnamaie-Tajadod R, Eaton L, Bengtsson J, Ojaghi M, Cheng H, Pamenter ME. What can naked mole-rats teach us about ameliorating hypoxia-related human diseases? Ann N Y Acad Sci 2024; 1540:104-120. [PMID: 39269277 DOI: 10.1111/nyas.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ameliorating the deleterious impact of systemic or tissue-level hypoxia or ischemia is key to preventing or treating many human diseases and pathologies. Usefully, environmental hypoxia is also a common challenge in many natural habitats; animals that are native to such hypoxic niches often exhibit strategies that enable them to thrive with limited O2 availability. Studying how such species have evolved to tolerate systemic hypoxia offers a promising avenue of discovery for novel strategies to mitigate the deleterious effects of hypoxia in human diseases and pathologies. Of particular interest are naked mole-rats, which are among the most hypoxia-tolerant mammals. Naked mole-rats that tolerate severe hypoxia in a laboratory setting are also protected against clinically relevant mimics of heart attack and stroke. The mechanisms that support this tolerance are currently being elucidated but results to date suggest that metabolic rate suppression, reprogramming of metabolic pathways, and mechanisms that defend against deleterious perturbations of cellular signaling pathways all provide layers of protection. Herein, we synthesize and discuss what is known regarding adaptations to hypoxia in the naked mole-rat cardiopulmonary system and brain, as these systems comprise both the primary means of delivering O2 to tissues and the most hypoxia-sensitive organs in mammals.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - John Bengtsson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hang Cheng
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Decreased Levels of Chaperones in Mucopolysaccharidoses and Their Elevation as a Putative Auxiliary Therapeutic Approach. Pharmaceutics 2023; 15:pharmaceutics15020704. [PMID: 36840025 PMCID: PMC9967431 DOI: 10.3390/pharmaceutics15020704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the therapies proposed thus far require the participation of chaperone proteins, regardless of whether they are therapies in common use (enzyme replacement therapy) or remain in the experimental phase (gene therapy, STOP-codon-readthrough therapy). Chaperones, which include heat shock proteins, are responsible for the correct folding of other proteins to the most energetically favorable conformation. Without their appropriate levels and activities, the correct folding of the lysosomal enzyme, whether supplied from outside or synthesized in the cell, would be impossible. However, the baseline level of nonspecific chaperone proteins in MPS has never been studied. Therefore, the purpose of this work was to determine the basal levels of nonspecific chaperone proteins of the Hsp family in MPS cells and to study the effect of normalizing GAG concentrations on these levels. Results of experiments with fibroblasts taken from patients with MPS types I, II, IIIA, IIIB, IIIC, IID, IVA, IVB, VI, VII, and IX, as well as from the brains of MPS I mice (Idua-/-), indicated significantly reduced levels of the two chaperones, Hsp70 and Hsp40. Interestingly, the reduction in GAG levels in the aforementioned cells did not lead to normalization of the levels of these chaperones but caused only a slight increase in the levels of Hsp40. An additional transcriptomic analysis of MPS cells indicated that the expression of other genes involved in protein folding processes and the cell response to endoplasmic reticulum stress, resulting from the appearance of abnormally folded proteins, was also modulated. To summarize, reduced levels of chaperones may be an additional cause of the low activity or inactivity of lysosomal enzymes in MPS. Moreover, this may point to causes of treatment failure where the correct structure of the enzyme supplied or synthesized in the cell is crucial to lower GAG levels.
Collapse
|
3
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
4
|
Abstract
ABSTRACT
Hypoxia is one of the strongest environmental drivers of cellular and physiological adaptation. Although most mammals are largely intolerant of hypoxia, some specialized species have evolved mitigative strategies to tolerate hypoxic niches. Among the most hypoxia-tolerant mammals are naked mole-rats (Heterocephalus glaber), a eusocial species of subterranean rodent native to eastern Africa. In hypoxia, naked mole-rats maintain consciousness and remain active despite a robust and rapid suppression of metabolic rate, which is mediated by numerous behavioural, physiological and cellular strategies. Conversely, hypoxia-intolerant mammals and most other hypoxia-tolerant mammals cannot achieve the same degree of metabolic savings while staying active in hypoxia and must also increase oxygen supply to tissues, and/or enter torpor. Intriguingly, recent studies suggest that naked mole-rats share many cellular strategies with non-mammalian vertebrate champions of anoxia tolerance, including the use of alternative metabolic end-products and potent pH buffering mechanisms to mitigate cellular acidification due to upregulation of anaerobic metabolic pathways, rapid mitochondrial remodelling to favour increased respiratory efficiency, and systemic shifts in energy prioritization to maintain brain function over that of other tissues. Herein, I discuss what is known regarding adaptations of naked mole-rats to a hypoxic lifestyle, and contrast strategies employed by this species to those of hypoxia-intolerant mammals, closely related African mole-rats, other well-studied hypoxia-tolerant mammals, and non-mammalian vertebrate champions of anoxia tolerance. I also discuss the neotenic theory of hypoxia tolerance – a leading theory that may explain the evolutionary origins of hypoxia tolerance in mammals – and highlight promising but underexplored avenues of hypoxia-related research in this fascinating model organism.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7. University of Ottawa, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
5
|
Huynh KW, Pamenter ME. Lactate inhibits naked mole-rat cardiac mitochondrial respiration. J Comp Physiol B 2022; 192:501-511. [PMID: 35181821 DOI: 10.1007/s00360-022-01430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 12/25/2022]
Abstract
In aerobic conditions, the proton-motive force drives oxidative phosphorylation (OXPHOS) and the conversion of ADP to ATP. In hypoxic environments, OXPHOS is impaired, resulting in energy shortfalls and the accumulation of protons and lactate. This results in cellular acidification, which may impact the activity and/or integrity of mitochondrial enzymes and in turn negatively impact mitochondrial respiration and thus aerobic ATP production. Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and putatively experience intermittent hypoxia in their underground burrows. However, if and how NMR cardiac mitochondria are impacted by lactate accumulation in hypoxia is unknown. We predicted that lactate alters mitochondrial respiration in NMR cardiac muscle. To test this, we used high-resolution respirometry to measure mitochondrial respiration in permeabilized cardiac muscle fibres from NMRs exposed to 4 h of in vivo normoxia (21% O2) or hypoxia (7% O2). We found that: (1) cardiac mitochondria cannot directly oxidize lactate, but surprisingly, (2) lactate inhibits mitochondrial respiration, and (3) decreases complex IV maximum respiratory capacity. Finally, (4) in vivo hypoxic exposure decreases the magnitude of lactate-mediated inhibition of mitochondrial respiration. Taken together, our results suggest that lactate may retard electron transport system function in NMR cardiac mitochondria, particularly in normoxia, and that NMR hearts may be primed for anaerobic metabolism.
Collapse
Affiliation(s)
- Kenny W Huynh
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Wen Y, Wang J, Liu X, Li S, Hu J, Luo Y. Regulating glycolysis and heat shock proteins in Gannan yaks ( Bos grunniens) in response to hypoxia of the Qinghai-Tibet Plateau. Arch Anim Breed 2021; 64:345-353. [PMID: 34458561 PMCID: PMC8386194 DOI: 10.5194/aab-64-345-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022] Open
Abstract
Glycolysis and heat shock proteins (HSPs) play an important role in
hypoxia-intolerant species during hypoxia conditions. This study was
conducted to evaluate the differences of glycolysis and heat shock proteins
(HSPs) in Gannan yaks (Bos grunniens), with the main goal of understanding how the response
to hypoxia changes with altitude. Here, the genes and enzymes of glycolysis
and HSPs were detected in heart, liver, lung, kidney, and longissimus dorsi
from Gannan yaks at different altitude (2500 and 3500 m) using qPCR,
western blot, and enzyme kits. The results showed that the expression of
HIF1A and PDK4 was increased with altitude (P<0.01) in above tissues.
Significantly increased lactate
dehydrogenase (LDH), adenosine triphosphate (ATP), and nicotinamide adenine
dinucleotide (NADH) levels and the ratio of
NADH/NAD+ were also observed in heart, lung, and longissimus dorsi tissues
(P<0.05), as well as a decreased citric acid (CA) level (P<0.05).
Furthermore, we observed significant global increases in the protein and
mRNA expression levels of both the ATP-independent HSP27 and the
ATP-dependent HSP60 during hypoxic conditions (P<0.01). These
findings revealed that hypoxia-reprogrammed glucose metabolism promotes
energy supply via up-regulated glycolysis and weakness of the tricarboxylic acid
(TCA) cycle. HSPs were activated and the prioritization of cytoprotective
protein chaperone functions over energy conservation in yak under hypoxic conditions.
These results are useful to better understand the unique adaptability of yak, allowing them to survive in hypoxia conditions.
Collapse
Affiliation(s)
- Yuliang Wen
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Jiqing Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Xiu Liu
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Shaobin Li
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Jiang Hu
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| | - Yuzhu Luo
- Faculty of Animal Science and Technology, Gansu Agricultural University, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Lanzhou 730070, China
| |
Collapse
|
7
|
Effect of glycolysis and heat shock proteins on hypoxia adaptation of Tibetan sheep at different altitude. Gene 2021; 803:145893. [PMID: 34384864 DOI: 10.1016/j.gene.2021.145893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022]
Abstract
Glycolysis and heat shock proteins (HSPs) play an important role in mediating the physiological response to hypoxia. The changes of glycolysis and HSPs with altitude would provide important information regarding ways to prevent hypoxia-related sickness in both animals and humans. In this study, the expression pattern of HIF1A, PDK4, HSP27 and HSP60, indexes activity and content of glucose metabolism were detected in heart, lung, brain, and quadriceps femoris taken from Tibetan sheep (Ovis aries) that were raised at different altitudes (2,500 m, 3,500 m and 4,500 m). The expression of HIF1A and PDK4 was increased with increasing altitude in all of the tissues. The lactate dehydrogenase (LDH) activities and adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH (redox state), NAD+), lactic acid (LA), pyruvic acid (PA) contents were all increased with increasing altitude in all of the tissues. The ratio of NADH/NAD+ and LA/PA were higher in sheep at an altitude of 4,500 m than of 3,500 m and 2,500 m in all tissues, except for the NADH/NAD+ ratio in lung and quadriceps femoris. An increase in the protein and mRNA expression of ATP-independent HSP27 during hypoxia condition was detected. The expression of ATP-dependent HSP60 mRNA and protein was increased in all of the tissues at an altitude of 3,500 m than of 2,500 m, but was decreased at an altitude of 4,500 m. These results suggest that glycolysis and HSPs are upregulated to ensure energy supply and proteostasis during hypoxia, but energy conservation may be prioritized over cytoprotective protein chaperoning in Tibetan sheep tissues during extreme hypoxia.
Collapse
|
8
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
9
|
Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2020; 236:5080-5097. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM, Kurlaeva AO. Heat Shock Protein HSP60 in Left Ventricular Cardiomyocytes of Hypertensive Rats with and without Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med 2020; 170:10-14. [PMID: 33219889 DOI: 10.1007/s10517-020-04994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/27/2022]
Abstract
In cardiomyocytes, high molecular ATP-dependent HSP70 and HSP90 play an important role in protecting the myocardium from abnormal proteins that appear, in particular, due to activation of oxidative stress. Molecular chaperone HSP60 is of particular importance for cardiomyocytes as it is responsible for assembly of mitochondrial matrix proteins. We studied the peculiarities of expression of HSP60 in left ventricular cardiomyocytes in hypertension, insulin-dependent diabetes mellitus, and their combination. The experiment was performed on 38-week-old male Wistar-Kyoto and SHR (spontaneously hypertensive) rats aged 38-57 weeks. Insulin-dependent diabetes mellitus was modeled by a single parenteral administration of 65 mg/kg streptozotocin. Expression of HSP60 in left ventricular cardiomyocytes was evaluated by immunohistochemical methods. It was found that hypertension, diabetes mellitus, and their combination are associated with a significant decrease in the content of HSP60 in left ventricular cardiomyocytes in comparison with the control. This finding can be considered as a pathogenetic mechanism of myocardial damage induced by hypertension and diabetes mellitus.
Collapse
Affiliation(s)
- M L Blagonravov
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia.
| | - A P Sklifasovskaya
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| | - A Yu Korshunova
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| | - M M Azova
- Department of Biology and General Genetics, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - A O Kurlaeva
- V. A. Frolov Department of General Pathology and Pathological Physiology, Moscow, Russia
| |
Collapse
|