1
|
Le MP, Burggren W, Martinez-Bautista G. Development and sex affect respiratory responses to temperature and dissolved oxygen in the air-breathing fishes Betta splendens and Trichopodus trichopterus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:27. [PMID: 39680326 DOI: 10.1007/s10695-024-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Ventilation frequencies of the gills (fG) and the air-breathing organ (fABO) were measured in juveniles and adults of the air-breathing betta (Betta splendens) and the blue gourami (Trichopodus trichopterus) in response to temperature and hypoxia. Ventilatory rates were evaluated after 1 h of exposure to 27 °C (control), 23 and 31 °C (PO2 = 21.0 kPa), after acute temperature changes (ATC) from 23 to 27, and 27 to 31 °C, and under progressive hypoxia (PH; PO2 = ~ 21 to 2.5 kPa). Complex, multi-phased ventilatory alterations were evident across species and experimental groups revealing different stress responses and shock reactions (e.g., changes in temperature sensitivity (Q10) of fG between 1-h exposure and ACT in both species). Female and male gourami showed differences in Q10 over the temperature range 23-31 °C. No such Q10 differences occurred in betta. Juveniles of both species showed higher Q10 for fABO (~ 3.7) than fG (~ 2.2). Adult fish exhibited variable Q10s for fG (~ 1.5 to ~ 4.3) and fABO (~ 0.8 to ~ 15.5) as a function of temperature, suggesting a switch from aquatic towards aerial ventilation in response to thermal stress. During PH, juveniles from both species showed higher fG than adults at all oxygen levels. Females from both species showed higher fG compared with males. Collectively, our results suggest that environmental cues modulate ventilatory responses in both species throughout ontogeny, but the actual responses reflect species-specific differences in natural habitat and ecology. Finally, we strongly suggest assessing physiological differences between male and female fish to avoid masking relevant findings and to facilitate results interpretation.
Collapse
Affiliation(s)
- My Phuong Le
- Department of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
2
|
Thi Hong Gam L, Montgomery DW, Laronde DS, Mackinnon R, Richards JG, Brauner CJ. Acute freshwater CO 2 exposure does not impair seawater transfer in three different sizes of Atlantic salmon (Salmo salar) subjected to different photoperiod manipulations. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39377470 DOI: 10.1111/jfb.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
There is a growing interest in Atlantic salmon (Salmo salar) aquaculture to extend the time fish are reared in freshwater (FW) recirculating aquaculture systems (RAS), producing larger FW salmon that can then be induced to undergo smoltification before transfer into marine net pens for grow-out and harvest. Smolts can be produced by photoperiod (PT) manipulation in RASs, but little is known about how delaying smoltification to larger body sizes affects susceptibility to elevated CO2 levels (hypercapnia), which can occur at high stocking densities in FW RAS or during transport from FW RAS rearing facilities to marine net pens. To address this, Atlantic salmon were reared from hatch to one of three different sizes (~230, ~580, or ~1300 g) in FW (3 ppt) under continuous light (24:0, light:dark). Once fish reached the desired sizes, a group of salmon were maintained on continuous light 24L:0D to serve as a control salmon. A second group of salmon were exposed to 8 weeks of 12L:12D and then to 4 weeks of 24L:0D to serve as PT treatment salmon, which is the PT manipulation commonly used in Atlantic salmon aquaculture to induce smoltification. At the end of PT manipulation, both control and PT treatment salmon were exposed to 0% or 1.5% CO2 (30 mg/L) for 96 h in FW and then transferred to air-equilibrated seawater (SW, 35 ppt, normocapnia). Salmon were sampled at the end of the 96-h FW CO2 exposure and at 24 h and 7 days in SW for measurements of blood ion/acid-base status, muscle water content (MWC), and gill and kidney Na+/K+ ATPase (NKA) activity. Exposure to 96 h of CO2 in FW resulted in acid-base disturbances in fish from all three size classes, with decreases in blood pH and increases in blood PCO2 and plasma [HCO3 -] but no mortality. Despite these large acid-base disturbances in FW, after transfer to normocapnic SW, there were no significant effects of CO2 exposure on extracellular blood pH, intracellular red blood cell pH, or plasma osmoregulatory status for all three sizes of post-smolt salmon. In general, SW transfer was associated with significant increases in plasma ions and osmolality, as well as gill and kidney NKA activity after 24 h and 1 week in SW with no significant impacts between different sizes of salmon. Thus, exposure to 30 mg CO2/L that mimics levels experienced during transport from FW RAS to an SW transfer site may have minimal effects on Atlantic salmon smolts up to 1300 g.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel W Montgomery
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Laronde
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Mackinnon
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Aaskov ML, Ishimatsu A, Nyengaard JR, Malte H, Lauridsen H, Ha NTK, Huong DTT, Bayley M. Modulation of gill surface area does not correlate with oxygen loss in Chitala ornata. Proc Biol Sci 2024; 291:20241884. [PMID: 39410672 PMCID: PMC11521143 DOI: 10.1098/rspb.2024.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 11/01/2024] Open
Abstract
Air-breathing fish risk losing aerially sourced oxygen to ambient hypoxic water since oxygenated blood from the air-breathing organ returns through the heart to the branchial basket before distribution. This loss is thought to help drive the evolutionary reduction in gill size with the advent of air-breathing. In many teleost fish, gill size is known to be highly plastic by modulation of their anatomic diffusion factor (ADF) with inter-lamellar cell mass (ILCM). In the anoxia-tolerant crucian carp, ILCM recedes with hypoxia but regrows in anoxia. The air-breathing teleost Chitala ornata has been shown to increase gill ADF from normoxic to mildly hypoxic water by reducing ILCM. Here, we test the hypothesis that ADF is modulated to minimize oxygen loss in severe aquatic hypoxia by measuring ADF, gas-exchange, and by using computed tomography scans to reveal possible trans-branchial shunt vessels. Contrary to our hypothesis, ADF does not modulate to prevent oxygen loss and despite no evident trans-branchial shunting, C. ornata loses only 3% of its aerially sourced O2 while still excreting 79% of its CO2 production to the severely hypoxic water. We propose this is achieved by ventilatory control and by compensating the minor oxygen loss by extra aerial O2 uptake.
Collapse
Affiliation(s)
- Magnus L. Aaskov
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Atsushi Ishimatsu
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
- Emeritus professor, Nagasaki University, 14 Bunkyo- machi, Nagasaki-shi852-8521, Japan
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| | - Nguyen Thi Kim Ha
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Mark Bayley
- Zoophysiology, Department of Biology, Aarhus University, 8000C Aarhus, Denmark
| |
Collapse
|
4
|
Adjei HO, Laar RY, Ofori-Darkwah P, Xatse EX, Bediako JO, Skov PV, Obirikorang KA. Air-breathing behavior in Heterotis niloticus fingerlings: Response to changes in oxygen, temperature, and exercise regimes. JOURNAL OF FISH BIOLOGY 2023; 103:1044-1053. [PMID: 37421412 DOI: 10.1111/jfb.15502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Air-breathing in fish is believed to have arisen as an adaptation to aquatic hypoxia. Although air-breathing has been widely studied in numerous fish species, little is known about the obligate air-breathing African bonytongue, Heterotis niloticus. We evaluated if abiotic factors and physical activity affect air-breathing patterns in fingerlings. The air-breathing frequency (fAB ) and behavioral responses of H. niloticus fingerlings were assessed in response to environmental oxygen, temperature, and exhaustion and activity in a series of experiments. The air-breathing behavior of H. niloticus fingerlings under optimum water conditions was characterized by swift excursions lasting less than 1 s to the air-water interface to gulp air. The intervals between air-breaths were highly variable, ranging from 3 to 259 s. Body size only slightly affected fAB , while hypoxia, hyperthermia, and exercise stress significantly increased fAB . Progressive hypoxia from 17.69 to 2.17 kPa caused a ~2.5-fold increase in fAB . Increasing temperatures to 27 and 32°C, from a baseline temperature of 22°C, significantly increased fAB from 0.4 ± 0.2 to 1.3 ± 0.5 and 1.6 ± 0.4 breaths min-1 , respectively. Lastly, following exhaustive exercise, fAB increased up to 3-fold. These observations suggest that H. niloticus fingerlings are very reliant on aerial oxygen, and their air-breathing behavior is sensitive to environmental changes and activity levels.
Collapse
Affiliation(s)
- Henry Owusu Adjei
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Robert Yadama Laar
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Ofori-Darkwah
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Xorla Xatse
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jedida Osei Bediako
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, Hirtshals, Denmark
| | - Kwasi Adu Obirikorang
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|