1
|
Nguyen A, Leong K, Holt NC. Does the unusual phenomenon of sustained force circumvent the speed-endurance trade-off in the jaw muscle of the southern alligator lizard (Elgaria multicarinata)? J Exp Biol 2025; 228:JEB247979. [PMID: 39690956 PMCID: PMC11832124 DOI: 10.1242/jeb.247979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged mate-holding behavior, and also to catch fast prey. In both males and females, these muscles exhibit an unusual type of high endurance known as sustained force in which contractile force does not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed-endurance trade-off. Here, we determined the isometric twitch, tetanic and isotonic force-velocity properties of the jaw muscles at ∼24°C as metrics of contractile speed and compared these properties with a more typical thigh locomotory muscle to determine whether endurance by sustained force allows for circumvention of the speed-endurance trade-off. The specialized jaw muscle was generally slower than the more typical thigh muscle: time to peak twitch force, twitch 90% relaxation time (P<0.01), and tetanic 90% and 50% relaxation times (P<0.001) were significantly longer, and force-velocity properties were significantly slower (P<0.001) in the jaw than the thigh muscle. However, there seemed to be greater effects on relaxation rates and shortening velocity than on force rise times: there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of the southern alligator lizard does not seem to circumvent the speed-endurance trade-off. However, the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of hybrid fibers, may allow this muscle to meet the functional demand of prey capture.
Collapse
Affiliation(s)
- Allyn Nguyen
- Evolution, Ecology, and Organismal Biology Department, University of California, Riverside, Riverside, CA 92521, USA
| | - Kyle Leong
- Evolution, Ecology, and Organismal Biology Department, University of California, Riverside, Riverside, CA 92521, USA
| | - Natalie C. Holt
- Evolution, Ecology, and Organismal Biology Department, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Culbert BM, Barnett JB, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Balshine S. Colorful facial markings are associated with foraging rates and affiliative relationships in a wild group-living cichlid fish. Curr Zool 2024; 70:70-78. [PMID: 38476131 PMCID: PMC10926260 DOI: 10.1093/cz/zoac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/11/2022] [Indexed: 03/14/2024] Open
Abstract
Many animals use color to signal their quality and/or behavioral motivations. Colorful signals have been well studied in the contexts of competition and mate choice; however, the role of these signals in nonsexual, affiliative relationships is not as well understood. Here, we used wild social groups of the cichlid fish Neolamprologus pulcher to investigate whether the size of a brightly colored facial patch was related to 1) individual quality, 2) social dominance, and/or 3) affiliative relationships. Individuals with larger patches spent more time foraging and tended to perform more aggressive acts against conspecific territory intruders. We did not find any evidence that the size of these yellow patches was related to social rank or body size, but dominant males tended to have larger patches than dominant females. Additionally, patch size had a rank-specific relationship with the number of affiliative interactions that individuals engaged in. Dominant males with large patches received fewer affiliative acts from their groupmates compared to dominant males with small patches. However, subordinates with large patches tended to receive more affiliative acts from their groupmates while performing fewer affiliative acts themselves. Taken together, our results suggest that patch size reflects interindividual variation in foraging effort in this cichlid fish and offer some of the first evidence that colorful signals may shape affiliative relationships within wild social groups.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Braga Goncalves I, Radford AN. Experimental evidence that chronic outgroup conflict reduces reproductive success in a cooperatively breeding fish. eLife 2022; 11:72567. [PMID: 36102799 PMCID: PMC9473690 DOI: 10.7554/elife.72567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Conflicts with conspecific outsiders are common in group-living species, from ants to primates, and are argued to be an important selective force in social evolution. However, whilst an extensive empirical literature exists on the behaviour exhibited during and immediately after interactions with rivals, only very few observational studies have considered the cumulative fitness consequences of outgroup conflict. Using a cooperatively breeding fish, the daffodil cichlid (Neolamprologus pulcher), we conducted the first experimental test of the effects of chronic outgroup conflict on reproductive investment and output. ‘Intruded’ groups received long-term simulated territorial intrusions by neighbours that generated consistent group-defence behaviour; matched ‘Control’ groups (each the same size and with the same neighbours as an Intruded group) received no intrusions in the same period. Intruded groups had longer inter-clutch intervals and produced eggs with increasingly less protein than Control groups. Despite the lower egg investment, Intruded groups provided more parental care and achieved similar hatching success to Control groups. Ultimately, however, Intruded groups had fewer and smaller surviving offspring than Control groups at 1-month post-hatching. We therefore provide experimental evidence that outgroup conflict can decrease fitness via cumulative effects on reproductive success, confirming the selective potential of this empirically neglected aspect of sociality.
Collapse
Affiliation(s)
| | - Andrew N Radford
- School of Biological Sciences/Life Sciences, University of Bristol
| |
Collapse
|
4
|
Friesen CN, Maclaine KD, Hofmann HA. Social status mediates behavioral, endocrine, and neural responses to an intruder challenge in a social cichlid, Astatotilapia burtoni. Horm Behav 2022; 145:105241. [PMID: 35964525 DOI: 10.1016/j.yhbeh.2022.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022]
Abstract
Most animals encounter social challenges throughout their lives as they compete for resources. Individual responses to such challenges can depend on social status, sex, and community-level attributes, yet most of our knowledge of the behavioral and physiological mechanisms by which individuals respond to challenges has come from dyadic interactions between a resource holder and a challenger (usually both males). To incorporate differences in individual behavior that are influenced by surrounding group members, we use naturalistic communities of the cichlid fish, Astatotilapia burtoni, and examine resident dominant male responses to a territorial intrusion within the social group. We measured behavior and steroid hormones (testosterone and cortisol), and neural activity in key brain regions implicated in regulating territorial and social dominance behavior. In response to a male intruder, resident dominant males shifted from border defense to overt attack behavior, accompanied by decreased basolateral amygdala activity. These differences were context dependent - resident dominant males only exhibited increased border defense when the intruder secured dominance. Neither subordinate males nor females changed their behavior in response to a territorial intrusion in their community. However, neural activity in both hippocampus and lateral septum of subordinates increased when the intruder failed to establish dominance. Our results demonstrate how a social challenge results in multi-faceted behavioral, hormonal, and neural changes, depending on social status, sex, and the outcome of an intruder challenge. Taken together, our work provides novel insights into the mechanisms through which individual group members display context- and status-appropriate challenge responses in dynamic social groups.
Collapse
Affiliation(s)
- Caitlin N Friesen
- Department of Integrative Biology, The University of Texas at Austin, USA; Neuroscience Institute, Georgia State University, USA.
| | - Kendra D Maclaine
- Department of Integrative Biology, The University of Texas at Austin, USA; Institute for Cellular & Molecular Biology, The University of Texas at Austin, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, USA; Institute for Cellular & Molecular Biology, The University of Texas at Austin, USA; Institute for Neuroscience, The University of Texas at Austin, USA.
| |
Collapse
|
5
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Bernier NJ, Hamilton IM, Balshine S. Glucocorticoids do not promote prosociality in a wild group-living fish. Horm Behav 2021; 127:104879. [PMID: 33121993 DOI: 10.1016/j.yhbeh.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Individuals often respond to social disturbances by increasing prosociality, which can strengthen social bonds, buffer against stress, and promote overall group cohesion. Given their importance in mediating stress responses, glucocorticoids have received considerable attention as potential proximate regulators of prosocial behaviour during disturbances. However, previous investigations have largely focused on mammals and our understanding of the potential prosocial effects of glucocorticoids across vertebrates more broadly is still lacking. Here, we assessed whether experimentally elevated glucocorticoid levels (simulating endogenous cortisol responses mounted following disturbances) promote prosocial behaviours in wild groups of the cichlid fish, Neolamprologus pulcher. Using SCUBA in Lake Tanganyika, we observed how subordinate group members adjusted affiliation, helping, and submission (all forms of prosocial behaviour) following underwater injections of either cortisol or saline. Cortisol treatment reduced affiliative behaviours-but only in females-suggesting that glucocorticoids may reduce overall prosociality. Fish with elevated glucocorticoid levels did not increase performance of submission or helping behaviours. Taken together, our results do not support a role for glucocorticoids in promoting prosocial behaviour in this species and emphasize the complexity of the proximate mechanisms that underlie prosociality.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|