1
|
Penmetcha B, Ryan LA, Ogawa Y, Hart NS, Narendra A. Visual physiology of Australian stingless bees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01740-x. [PMID: 40392294 DOI: 10.1007/s00359-025-01740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025]
Abstract
Stingless bees engage in a range of visually guided behaviours that require relatively high spatial resolution and contrast sensitivity. Although the eyes of honeybees, bumblebees, carpenter bees, and sweat bees have been studied extensively, there is limited knowledge of stingless bees. Here, we studied two sympatric Australian species, Tetragonula carbonaria and Austroplebeia australis, which are important crop pollinators. The bigger A. australis had more and larger ommatidial facets compared to T. carbonaria. Using pattern electroretinography, we showed that A. australis had higher contrast sensitivity (13.07) compared to T. carbonaria (5.99), but their spatial resolving power did not differ (0.53 cycles deg-1). We discuss these differences in visual physiology in the context of the distinct foraging behaviours of the two species.
Collapse
Affiliation(s)
- Bhavana Penmetcha
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Yuri Ogawa
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Ajay Narendra
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
2
|
Vincze C, Leelőssy Á, Zajácz E, Mészáros R. A review of short-term weather impacts on honey production. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:303-317. [PMID: 39643781 PMCID: PMC11785677 DOI: 10.1007/s00484-024-02824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Beekeeping is an exceptionally weather-sensitive agricultural field. Honey production and pollination services depend on the complex interaction of plants and bees, both of which are impacted by short-term weather changes. In this review, classical and recent research is collected to provide an overview on short-term atmospheric factors influencing honey production, and the optimal and critical weather conditions for bee activity. Bee flight can be directly obstructed by precipitation, wind, extreme temperatures and also air pollution. Bees generally fly within a temperature range of 10-40 °C, with optimal foraging efficiency occurring between 20 and 30 °C. Wind speeds exceeding 1.6-6.7 m/s can reduce foraging efficiency. Additionally, bee activity is significantly correlated with temperature, relative humidity and solar radiation, factors which influence nectar production. Optimal conditions for nectar collection typically occur in the morning and early afternoon hours with mild and moist weather. The diurnal nectar collection habit of bees adjusts to the nectar production of individual plant species. Extreme weather occurring in the sensitive hours is noticeable both in the nectar production of plants and in the activity of bees, thus in the honey yield. Understanding the impact of weather on honey bees is crucial in the management and planning of honey production. This review highlights the importance of studying these interactions to better adapt beekeeping practices to changing environmental conditions.
Collapse
Affiliation(s)
- Csilla Vincze
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Leelőssy
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Edit Zajácz
- Institute for Farm Animal Gene Conservation, Department of Apiculture and Bee Biology, National Centre for Biodiversity and Gene Conservation, Gödöllő, Hungary
| | - Róbert Mészáros
- Institute of Geography and Earth Sciences, Department of Meteorology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
3
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees compensate for the adverse effects of sidewind during visually guided landings. J Exp Biol 2024; 227:jeb245432. [PMID: 38506223 PMCID: PMC11112349 DOI: 10.1242/jeb.245432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Flying animals often encounter winds during visually guided landings. However, how winds affect their flight control strategy during landing is unknown. Here, we investigated how sidewind affects the landing performance and sensorimotor control of foraging bumblebees (Bombus terrestris). We trained bumblebees to forage in a wind tunnel, and used high-speed stereoscopic videography to record 19,421 landing maneuvers in six sidewind speeds (0 to 3.4 m s-1), which correspond to winds encountered in nature. Bumblebees landed less often in higher windspeeds, but the landing durations from free flight were not increased by wind. By testing how bumblebees adjusted their landing control to compensate for adverse effects of sidewind on landing, we showed that the landing strategy in sidewind resembled that in still air, but with important adaptations. Bumblebees landing in a sidewind tended to drift downwind, which they controlled for by performing more hover maneuvers. Surprisingly, the increased hover prevalence did not increase the duration of free-flight landing maneuvers, as these bumblebees flew faster towards the landing platform outside the hover phases. Hence, by alternating these two flight modes along their flight path, free-flying bumblebees negated the adverse effects of high windspeeds on landing duration. Using control theory, we hypothesize that bumblebees achieve this by integrating a combination of direct aerodynamic feedback and a wind-mediated mechanosensory feedback control, with their vision-based sensorimotor control loop. The revealed landing strategy may be commonly used by insects landing in windy conditions, and may inspire the development of landing control strategies onboard autonomously flying robots.
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
4
|
Glass JR, Burnett NP, Combes SA, Weisman E, Helbling A, Harrison JF. Flying, nectar-loaded honey bees conserve water and improve heat tolerance by reducing wingbeat frequency and metabolic heat production. Proc Natl Acad Sci U S A 2024; 121:e2311025121. [PMID: 38227669 PMCID: PMC10823226 DOI: 10.1073/pnas.2311025121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C. Flying, nectar-loaded bees were able to avoid overheating at 40 °C by reducing their flight metabolic rates and increasing evaporative cooling. At high body temperatures, bees apparently increase flight efficiency by lowering their wingbeat frequency and increasing stroke amplitude to compensate, reducing the need for evaporative cooling. However, even with reductions in metabolic heat production, desiccation likely limits foraging at temperatures well below bees' critical thermal maxima in hot, dry conditions.
Collapse
Affiliation(s)
- Jordan R. Glass
- School of Life Sciences, Arizona State University, Tempe, AZ85281
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071
| | - Nicholas P. Burnett
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA95616
| | - Stacey A. Combes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA95616
| | - Ethan Weisman
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Alina Helbling
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| | - Jon F. Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ85281
| |
Collapse
|
5
|
Burnett NP, Badger MA, Combes SA. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field. PLoS One 2022; 17:e0265911. [PMID: 35325004 PMCID: PMC8947135 DOI: 10.1371/journal.pone.0265911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Bees flying through natural landscapes frequently encounter physical challenges, such as wind and cluttered vegetation, but the influence of these factors on flight performance remains unknown. We analyzed 548 videos of wild-caught honeybees (Apis mellifera) flying through an enclosure containing a field of vertical obstacles that bees could choose to fly within (through open corridors, without maneuvering) or above. We varied obstacle field height and wind condition (still, headwinds or tailwinds), and examined how these factors affected bees’ flight altitude, ground speed, and side-to-side casting motions (lateral excursions). When obstacle fields were short, bees flew at altitudes near the midpoint between the tunnel floor and ceiling. When obstacle fields approached or exceeded this midpoint, bees tended to increase their altitude, but they did not always avoid flying through obstacles, despite having the freedom to do so. Bees that flew above the obstacles exhibited 40% faster ground speeds and 36% larger lateral excursions than bees that flew within the obstacle fields. Wind did not affect flight altitude, but bees flew 12–19% faster in tailwinds, and their lateral excursions were 19% larger when flying in headwinds or tailwinds, as compared to still air. Our results show that bees flying through complex environments display flexibility in their route choices (i.e., flying above obstacles in some trials and through them in others), which affects their overall flight performance. Similar choices in natural landscapes could have broad implications for foraging efficiency, pollination, and mortality in wild bees.
Collapse
Affiliation(s)
- Nicholas P. Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
- * E-mail:
| | - Marc A. Badger
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stacey A. Combes
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
6
|
Ravi S, Siesenop T, Bertrand OJ, Li L, Doussot C, Fisher A, Warren WH, Egelhaaf M. Bumblebees display characteristics of active vision during robust obstacle avoidance flight. J Exp Biol 2022; 225:274096. [PMID: 35067721 PMCID: PMC8920035 DOI: 10.1242/jeb.243021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Insects are remarkable flyers and capable of navigating through highly cluttered environments. We tracked the head and thorax of bumblebees freely flying in a tunnel containing vertically oriented obstacles to uncover the sensorimotor strategies used for obstacle detection and collision avoidance. Bumblebees presented all the characteristics of active vision during flight by stabilizing their head relative to the external environment and maintained close alignment between their gaze and flightpath. Head stabilization increased motion contrast of nearby features against the background to enable obstacle detection. As bees approached obstacles, they appeared to modulate avoidance responses based on the relative retinal expansion velocity (RREV) of obstacles and their maximum evasion acceleration was linearly related to RREVmax. Finally, bees prevented collisions through rapid roll manoeuvres implemented by their thorax. Overall, the combination of visuo-motor strategies of bumblebees highlights elegant solutions developed by insects for visually guided flight through cluttered environments.
Collapse
Affiliation(s)
- Sridhar Ravi
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany,School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia,Author for correspondence ()
| | - Tim Siesenop
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Olivier J. Bertrand
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Liang Li
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Charlotte Doussot
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| | - Alex Fisher
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - William H. Warren
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Martin Egelhaaf
- Department of Neurobiology and Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33619 Bielefeld, Germany
| |
Collapse
|
7
|
Rodríguez-Morales D, Tapia-McClung H, Robledo-Ospina LE, Rao D. Colour and motion affect a dune wasp's ability to detect its cryptic spider predators. Sci Rep 2021; 11:15442. [PMID: 34326422 PMCID: PMC8322161 DOI: 10.1038/s41598-021-94926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ambush predators depend on cryptic body colouration, stillness and a suitable hunting location to optimise the probability of prey capture. Detection of cryptic predators, such as crab spiders, by flower seeking wasps may also be hindered by wind induced movement of the flowers themselves. In a beach dune habitat, Microbembex nigrifrons wasps approaching flowerheads of the Palafoxia lindenii plant need to evaluate the flowers to avoid spider attack. Wasps may detect spiders through colour and movement cues. We tracked the flight trajectories of dune wasps as they approached occupied and unoccupied flowers under two movement conditions; when the flowers were still or moving. We simulated the appearance of the spider and the flower using psychophysical visual modelling techniques and related it to the decisions made by the wasp to land or avoid the flower. Wasps could discriminate spiders only at a very close range, and this was reflected in the shape of their trajectories. Wasps were more prone to making errors in threat assessment when the flowers are moving. Our results suggest that dune wasp predation risk is augmented by abiotic conditions such as wind and compromises their early detection capabilities.
Collapse
Affiliation(s)
- Dulce Rodríguez-Morales
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Instituto de Investigación en Inteligencia Artificial (IIIA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Luis E Robledo-Ospina
- Red de Ecoetología, Instituto de Ecología A.C., Carretera antigua a Coatepec No. 351, Xalapa, Veracruz, Mexico
| | - Dinesh Rao
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|
8
|
Islam M, Deeti S, Kamhi JF, Cheng K. Minding the gap: learning and visual scanning behaviour in nocturnal bull ants. J Exp Biol 2021; 224:270965. [PMID: 34142708 PMCID: PMC8325935 DOI: 10.1242/jeb.242245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 01/17/2023]
Abstract
Insects possess small brains but exhibit sophisticated behaviour, specifically their ability to learn to navigate within complex environments. To understand how they learn to navigate in a cluttered environment, we focused on learning and visual scanning behaviour in the Australian nocturnal bull ant, Myrmecia midas, which are exceptional visual navigators. We tested how individual ants learn to detour via a gap and how they cope with substantial spatial changes over trips. Homing M. midas ants encountered a barrier on their foraging route and had to find a 50 cm gap between symmetrical large black screens, at 1 m distance towards the nest direction from the centre of the releasing platform in both familiar (on-route) and semi-familiar (off-route) environments. Foragers were tested for up to 3 learning trips with the changed conditions in both environments. The results showed that on the familiar route, individual foragers learned the gap quickly compared with when they were tested in the semi-familiar environment. When the route was less familiar, and the panorama was changed, foragers were less successful at finding the gap and performed more scans on their way home. Scene familiarity thus played a significant role in visual scanning behaviour. In both on-route and off-route environments, panoramic changes significantly affected learning, initial orientation and scanning behaviour. Nevertheless, over a few trips, success at gap finding increased, visual scans were reduced, the paths became straighter, and individuals took less time to reach the goal. Summary: Investigation of how nocturnal bull ants learn to move around obstacles in familiar and semi-familiar environments reveals that scene familiarity plays a significant role in navigation.
Collapse
Affiliation(s)
- Muzahid Islam
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sudhakar Deeti
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Neuroscience Department, Oberlin College, Oberlin, OH 44074, USA
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|