1
|
Phytochemical Profiles, Antioxidant Activity and Antiproliferative Mechanism of Rhodiola rosea L. Phenolic Extract. Nutrients 2022; 14:nu14173602. [PMID: 36079857 PMCID: PMC9459784 DOI: 10.3390/nu14173602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The phenolic profiles, antioxidant activity, antiproliferative property and the underlying molecular mechanisms of cell apoptosis of Rhodiola rosea free phenolic (RFE) were analyzed in this work. Overall, Rhodiola rosea rhizome phenolic extract (RE) contained Rhodiola rosea rhizome free phenolic extract (RFE) and Rhodiola rosea rhizome bound phenolic extract (RBE). Compared with RBE, RFE contained higher phenolic contents and possessed stronger antioxidant activity. High-performance liquid chromatography (HPLC) results demonstrated that the main phenolics of were epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallic acid (GA) and catechin. Gas chromatography–mass spectrometry (GC-MS) analysis found that Rhodiola rosea L. was rich in volatile phytochemicals. In addition, many types of vitamin E and a few kinds of carotenoids were found in Rhodiola rosea. In addition, the main compounds in RFE (GA, EGC, EGCG) and RFE all exhibited excellent antiproliferative activity, indicating the antiproliferative activity of RFE was partly attributed to the synergy effects of the main compounds. Further study confirmed that RFE could block 16.99% of HepG2 cells at S phase and induce 20.32% programmed cell death compared with the control group. Specifically, RFE dose-dependently induced cell apoptosis and cell cycle arrest via modulating the p53 signaling pathway including up-regulation of the expression of p53 and Bax while down-regulation of the Bcl-2, cyclin D1 and CDK4 levels. Therefore, RFE exhibited the potential of being developed as an auxiliary antioxidant and a therapeutic agent for cancer.
Collapse
|
2
|
Ntie-Kang F, Telukunta KK, Fobofou SAT, Chukwudi Osamor V, Egieyeh SA, Valli M, Djoumbou-Feunang Y, Sorokina M, Stork C, Mathai N, Zierep P, Chávez-Hernández AL, Duran-Frigola M, Babiaka SB, Tematio Fouedjou R, Eni DB, Akame S, Arreyetta-Bawak AB, Ebob OT, Metuge JA, Bekono BD, Isa MA, Onuku R, Shadrack DM, Musyoka TM, Patil VM, van der Hooft JJJ, da Silva Bolzani V, Medina-Franco JL, Kirchmair J, Weber T, Tastan Bishop Ö, Medema MH, Wessjohann LA, Ludwig-Müller J. Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop. J Cheminform 2021; 13:64. [PMID: 34488889 PMCID: PMC8419829 DOI: 10.1186/s13321-021-00546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
We report the major conclusions of the online open-access workshop "Computational Applications in Secondary Metabolite Discovery (CAiSMD)" that took place from 08 to 10 March 2021. Invited speakers from academia and industry and about 200 registered participants from five continents (Africa, Asia, Europe, South America, and North America) took part in the workshop. The workshop highlighted the potential applications of computational methodologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads. During 3 days, the participants of this online workshop received an overview of modern computer-based approaches for exploring NP discovery in the "omics" age. The invited experts gave keynote lectures, trained participants in hands-on sessions, and held round table discussions. This was followed by oral presentations with much interaction between the speakers and the audience. Selected applicants (early-career scientists) were offered the opportunity to give oral presentations (15 min) and present posters in the form of flash presentations (5 min) upon submission of an abstract. The final program available on the workshop website ( https://caismd.indiayouth.info/ ) comprised of 4 keynote lectures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting report also references internet resources for computational biology in the area of secondary metabolites that are of use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop concluded with an online survey form to be completed by speakers and participants for the goal of improving any subsequent editions.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Kiran K. Telukunta
- Tarunavadaanenasaha Muktbharatonnayana Samstha Foundation, Hyderabad, India
| | - Serge A. T. Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, 38106 Braunschweig, Germany
| | - Victor Chukwudi Osamor
- Department of Computer and Information Sciences, Colege of Science and Technology, Covenant University, Km. 10 Idiroko Rd, Ogun Ota, Nigeria
| | - Samuel A. Egieyeh
- School of Pharmacy, University of the Western Cape, Cape Town, 7535 South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535 South Africa
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University–UNESP, Araraquara, Brazil
| | | | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Conrad Stork
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Neann Mathai
- Department of Chemistry and Computational Biology Unit (CBU), University of Bergen, 5020 Bergen, Norway
| | - Paul Zierep
- Pharmaceutical Bioinformatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Ana L. Chávez-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miquel Duran-Frigola
- Ersilia Open Source Initiative, Cambridge, UK
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia Spain
| | - Smith B. Babiaka
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | | | - Donatus B. Eni
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Simeon Akame
- Department of Immunology, School of Health Sciences, Catholic University of Central Africa, BP 7871, Yaoundé, Cameroon
| | | | - Oyere T. Ebob
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Jonathan A. Metuge
- Department of Biochemistry and Molecular Biology, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Boris D. Bekono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, BP. 47, Yaoundé, Cameroon
| | - Mustafa A. Isa
- Bioinformatics and Computational Biology Lab, Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State Nigeria
| | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Daniel M. Shadrack
- Department of Chemistry, St. John’s University of Tanzania, P. O. Box 47, Dodoma, Tanzania
| | - Thommas M. Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140 South Africa
| | - Vaishali M. Patil
- Computer Aided Drug Design Lab, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206 India
| | | | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University–UNESP, Araraquara, Brazil
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140 South Africa
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103 Leipzig, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|