1
|
Ibanez F, Vieira Rocha S, Dawson WO, El-Mohtar C, Robertson C, Stelinski LL, Soares-Costa A. Gene silencing of cathepsins B and L using CTV-based, plant-mediated RNAi interferes with ovarial development in Asian citrus psyllid (ACP), Diaphorina citri. FRONTIERS IN PLANT SCIENCE 2023; 14:1219319. [PMID: 37841623 PMCID: PMC10570424 DOI: 10.3389/fpls.2023.1219319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of the bacteria Candidatus Liberibacter americanus (CLam) and Candidatus Liberibacter asiaticus (CLas), which are phloem-restricted and associated with the most important and destructive worldwide citrus disease, Huanglongbing (HLB). Currently, no cure for HLB has been described. Therefore, measures have focused on reducing D. citri populations. In these insects, cathepsin B (DCcathB) and L (DCcathL) enzymes play an important role in digestion, and are involved in embryogenesis, immune defense, and ecdysis. In this study, we used a CTV-based vector to deliver dsRNA (CTV-dsRNA) into Citrus macrophylla plants targeting DCcathB and DCcathL genes in D. citri that fed on the phloem of these CTV-RNAi infected plants. Subsequently, we evaluated expression of DCcathB and DCcathL genes as well as the Vitellogenin (Vg) gene by RT-qPCR in D. citri fed on CTV-dsRNA occurring in plant phloem. It was found that a defective phenotype in D. citri females as a result of knockdown of DCcathB and DCcathL genes mediated by CTV dsRNA. These results showed that Psyllids fed on plants treated with the CTV-dsRNA exhibited downregulation of the Vg gene, one of the most important genes associated with embryogenic and female development, which was associated with dsRNA-mediated silencing of the two cathepsin genes. Based on our findings, a CTV-based strategy for delivering RNAi via plants that targets DCcathB and DCcathL genes may represent a suitable avenue for development of dsRNA-based tools to manage D. citri that limits the spread of HLB.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M AgriLife Research, Weslaco, TX, ;United States
| | - Sâmara Vieira Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, ;Brazil
| | - William O. Dawson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Choaa El-Mohtar
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Cecile Robertson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Andrea Soares-Costa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| |
Collapse
|
2
|
Paul G, Bartels L, Bueno FGB, Law G, Heard T, Chapman N, Buchmann G, Lim J, Gloag R. Shifting range in a stingless bee leads to pre-mating reproductive interference between species. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractHuman-induced shifts in species’ ranges can increase contact between closely related species and lead to reproductive interference. In Australia, climate change and trade in stingless bee colonies is increasing the range overlap of two cryptic species: Tetragonula carbonaria and T. hockingsi. To investigate reproductive interactions between these species, we validated a diagnostic-PCR test based on the mitochondrial gene COI to ID field specimens to species. We then assessed the likelihood of reproductive interference in four ways. First, we imaged the male genitalia of each species and found no evidence of reproductive character displacement. Second, we assessed species composition of mating aggregations in an area of sympatry (Southeast Queensland) and confirmed that some males join the mating aggregations of interspecific colonies. Third, we translocated T. hockingsi colonies into the southern range of T. carbonaria (Sydney) and tracked their ability to requeen. These translocated colonies attracted mating aggregations comprised almost entirely of interspecific males, but never formed hybrid colonies; instead, queens either mated with their brothers, or the colony failed to requeen at all. Finally, we presented T. carbonaria males with either conspecific or interspecific virgin queens and found that males attempted to mate only with their own species’ queens. In all, we conclude that reproductive barriers between these species are complete with respect to “short-range” mating cues, but not for “long-range” mate attraction cues. Our study highlights that hive movements can increase some forms of pre-mating reproductive interference between managed bee species, even where the species do not actually mate or hybridize.
Collapse
|
3
|
Garcia Bulle Bueno F, Garcia Bulle Bueno B, Buchmann G, Heard T, Latty T, Oldroyd BP, Hosoi AE, Gloag R. Males Are Capable of Long-Distance Dispersal in a Social Bee. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.843156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pollinator conservation is aided by knowledge of dispersal behavior, which shapes gene flow and population structure. In many bees, dispersal is thought to be male-biased, and males’ movements may be critical to maintaining gene flow in disturbed and fragmented habitats. Yet male bee movements are challenging to track directly and male dispersal ability remains poorly understood in most species. Here, we combine field manipulations and models to assess male dispersal ability in a stingless bee (Tetragonula carbonaria). We placed colonies with virgin queens at varying distances apart (1–48 km), genotyped the males that gathered at mating aggregations outside each colony, and used pairwise sibship assignment to determine the distribution of likely brothers across aggregations. We then compared simulations of male dispersal to our observed distributions and found best-fit models when males dispersed an average of 2–3 km (>2-fold female flight ranges), and maximum of 20 km (30-fold female flight ranges). Our data supports the view that male bee dispersal can facilitate gene flow over long-distances, and thus play a key role in bee populations’ resilience to habitat loss and fragmentation. In addition, we show that the number of families contributing to male aggregations can be used to estimate local stingless bee colony densities, allowing population monitoring of these important tropical pollinators.
Collapse
|