1
|
Van Houten J. A Review for the Special Issue on Paramecium as a Modern Model Organism. Microorganisms 2023; 11:937. [PMID: 37110360 PMCID: PMC10143506 DOI: 10.3390/microorganisms11040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
This review provides background and perspective for the articles contributing to the Special Issue of MDPI Micro-organisms on Paramecium as a Modern Model Organism. The six articles cover a variety of topics, each taking advantage of an important aspect of Paramecium biology: peripheral surface proteins that are developmentally regulated, endosymbiont algae and bacteria, ion channel regulation by calmodulin, regulation of cell mating reactivity and senescence, and the introns that dwell in the large genome. Each article highlights a significant aspect of Paramecium and its versatility.
Collapse
Affiliation(s)
- Judith Van Houten
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
2
|
Valentine M, Yano J, Lodh S, Nabi A, Deng B, Van Houten J. Methods for Paramecium tetraurelia ciliary membrane protein identification and function. Methods Cell Biol 2023; 175:177-219. [PMID: 36967141 DOI: 10.1016/bs.mcb.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this chapter we provide some tools to study the ciliary proteins that make it possible for Paramecium cells to swim by beating their cilia. These proteins include many ion channels, accessory proteins, peripheral proteins, structural proteins, rootlets of cilia, and enzymes. Some of these proteins are also found in the soma membrane, but their distinct and critical functions are in the cilia. Paramecium has 4000 or more cilia per cell, giving it an advantage for biochemical studies over cells that have one primarily cilium per cell. Nonetheless, a challenge for studies of many ciliary proteins in Paramecium is their low abundance. We discuss here several strategies to overcome this challenge and other challenges such as working with very large channel proteins. We also include for completeness other techniques that are critical to the study of swimming behavior, such as genetic crosses, recording of swimming patterns, electrical recordings, expression of very large channel proteins, RNA Interference, among others.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York, Plattsburgh, NY, United States
| | - Junji Yano
- University of Vermont, Burlington, VT, United States
| | - Sukanya Lodh
- Marquette University, Milwaukee, WI, United States
| | | | - Bin Deng
- Vermont Biomedical Research Network, University of Vermont, Burlington, VT, United States
| | | |
Collapse
|
3
|
Calmodulin in Paramecium: Focus on Genomic Data. Microorganisms 2022; 10:microorganisms10101915. [PMID: 36296191 PMCID: PMC9608856 DOI: 10.3390/microorganisms10101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger that plays a key role in cellular signaling. However, Ca2+ signals are transduced with the help of Ca2+-binding proteins, which serve as sensors, transducers, and elicitors. Among the collection of these Ca2+-binding proteins, calmodulin (CaM) emerged as the prototypical model in eukaryotic cells. This is a small protein that binds four Ca2+ ions and whose functions are multiple, controlling many essential aspects of cell physiology. CaM is universally distributed in eukaryotes, from multicellular organisms, such as human and land plants, to unicellular microorganisms, such as yeasts and ciliates. Here, we review most of the information gathered on CaM in Paramecium, a group of ciliates. We condense the information here by mentioning that mature Paramecium CaM is a 148 amino acid-long protein codified by a single gene, as in other eukaryotic microorganisms. In these ciliates, the protein is notoriously localized and regulates cilia function and can stimulate the activity of some enzymes. When Paramecium CaM is mutated, cells show flawed locomotion and/or exocytosis. We further widen this and additional information in the text, focusing on genomic data.
Collapse
|
4
|
Saitoh D, Kawaguchi K, Asano S, Inui T, Marunaka Y, Nakahari T. Enhancement of airway ciliary beating mediated via voltage-gated Ca 2+ channels/α7-nicotinic receptors in mice. Pflugers Arch 2022; 474:1091-1106. [PMID: 35819489 DOI: 10.1007/s00424-022-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Acetylcholine (ACh), which activates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs), enhances airway ciliary beating by increasing the intracellular Ca2+ concentration ([Ca2+]i). The mechanisms enhancing airway ciliary beating by nAChRs have remained largely unknown, although those by mAChRs are well understood. In this study, we focused on the effects of α7-nAChRs and voltage-gated Ca2+ channels (CaVs) on the airway ciliary beating. The activities of ciliary beating were assessed by frequency (CBF, ciliary beat frequency) and amplitude (CBD, ciliary bend distance) measured by high-speed video microscopy. ACh enhanced CBF and CBD by 25% mediated by an [Ca2+]i increase stimulated by mAChRs and α7-nAChRs (a subunit of nAChR) in airway ciliary cells of mice. Experiments using PNU282987 (an agonist of α7-nAChR) and MLA (an inhibitor of α7-nAChR) revealed that CBF and CBD enhanced by α7-nAChR are approximately 50% of those enhanced by ACh. CBF, CBD, and [Ca2+]i enhanced by α7-nAChRs were inhibited by nifedipine, suggesting activation of CaVs by α7-nAChRs. Experiments using a high K+ solution with/without nifedipine (155.5 mM K+) showed that the activation of CaVs enhances CBF and CBD via an [Ca2+]i increase. Immunofluorescence and immunoblotting studies demonstrated that Cav1.2 and α7-nAChR are expressed in airway cilia. Moreover, IL-13 stimulated MLA-sensitive increases in CBF and CBD in airway ciliary cells, suggesting an autocrine regulation of ciliary beating by CaV1.2/α7-nAChR/ACh. In conclusion, a novel Ca2+ signalling pathway in airway cilia, CaV1.2/α7-nAChR, enhances CBF and CBD and activates mucociliary clearance maintaining healthy airways.
Collapse
Affiliation(s)
- Daichi Saitoh
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kotoku Kawaguchi
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
5
|
Bouhouche K, Valentine MS, Le Borgne P, Lemullois M, Yano J, Lodh S, Nabi A, Tassin AM, Van Houten JL. Paramecium, a Model to Study Ciliary Beating and Ciliogenesis: Insights From Cutting-Edge Approaches. Front Cell Dev Biol 2022; 10:847908. [PMID: 35359441 PMCID: PMC8964087 DOI: 10.3389/fcell.2022.847908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Cilia are ubiquitous and highly conserved extensions that endow the cell with motility and sensory functions. They were present in the first eukaryotes and conserved throughout evolution (Carvalho-Santos et al., 2011). Paramecium has around 4,000 motile cilia on its surface arranged in longitudinal rows, beating in waves to ensure movement and feeding. As with cilia in other model organisms, direction and speed of Paramecium ciliary beating is under bioelectric control of ciliary ion channels. In multiciliated cells of metazoans as well as paramecia, the cilia become physically entrained to beat in metachronal waves. This ciliated organism, Paramecium, is an attractive model for multidisciplinary approaches to dissect the location, structure and function of ciliary ion channels and other proteins involved in ciliary beating. Swimming behavior also can be a read-out of the role of cilia in sensory signal transduction. A cilium emanates from a BB, structurally equivalent to the centriole anchored at the cell surface, and elongates an axoneme composed of microtubule doublets enclosed in a ciliary membrane contiguous with the plasma membrane. The connection between the BB and the axoneme constitutes the transition zone, which serves as a diffusion barrier between the intracellular space and the cilium, defining the ciliary compartment. Human pathologies affecting cilia structure or function, are called ciliopathies, which are caused by gene mutations. For that reason, the molecular mechanisms and structural aspects of cilia assembly and function are actively studied using a variety of model systems, ranging from unicellular organisms to metazoa. In this review, we will highlight the use of Paramecium as a model to decipher ciliary beating mechanisms as well as high resolution insights into BB structure and anchoring. We will show that study of cilia in Paramecium promotes our understanding of cilia formation and function. In addition, we demonstrate that Paramecium could be a useful tool to validate candidate genes for ciliopathies.
Collapse
Affiliation(s)
- K. Bouhouche
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - P. Le Borgne
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - M. Lemullois
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. Yano
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - S. Lodh
- Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - A. Nabi
- Luminex, Austin, TX, United States
| | - A. M. Tassin
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. L. Van Houten
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
6
|
Valentine M, Van Houten J. Using Paramecium as a Model for Ciliopathies. Genes (Basel) 2021; 12:genes12101493. [PMID: 34680887 PMCID: PMC8535419 DOI: 10.3390/genes12101493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023] Open
Abstract
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the advent of molecular technologies, it became clear that there was not only great conservation of ciliary structure but also of the genes coding for ciliary structure and function. It is this conservation and the legacy of past research that allow us to use Paramecium as a model for cilia and ciliary diseases called ciliopathies. However, there would be no compelling reason to study Paramecium as this model if there were no new insights into cilia and ciliopathies to be gained. In this review, we present studies that we believe will do this. For example, while the literature continues to state that immotile cilia are sensory and motile cilia are not, we will provide evidence that Paramecium cilia are clearly sensory. Other examples show that while a Paramecium protein is highly conserved it takes a different interacting partner or conducts a different ion than expected. Perhaps these exceptions will provoke new ideas about mammalian systems.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA;
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|