1
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
2
|
Kou G, Wang Y, Dudley R, Wu Y, Li D. Coping with captivity: takeoff speed and load-lifting capacity are unaffected by substantial changes in body condition for a passerine bird. J Exp Biol 2022; 225:276048. [PMID: 35765864 DOI: 10.1242/jeb.244642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Captivity presumably challenges physiological equilibrium of birds and thus influences flight ability. However, the extent to which captive birds exhibit altered features underpinning maximum flight performance remains largely unknown. Here, we studied changes in physiological condition and load-lifting performance in the Eurasian tree sparrow (Passer montanus) over 15, 30, and 45 days of captivity. Sparrows showed body mass constancy over time but also an increased hematocrit at 15 days of captivity; both relative pectoralis mass and its fat content increased at 30 days. However, maximum takeoff speed and maximum lifted load remained largely unchanged until 45 days of captivity. Wingbeat frequency was independent of captivity duration and loading condition, whereas body angle and stroke plane angle varied only with maximum loading and not with duration of captivity. Overall, these results suggest that captive birds can maintain maximum flight performance when experiencing dramatic changes in both internal milieu and external environment.
Collapse
Affiliation(s)
- Guanqun Kou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuefeng Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Kahane-Rapport SR, Whelan S, Ammendolia J, Hatch SA, Elliott KH, Jacobs S. Food supply and individual quality influence seabird energy expenditure and reproductive success. Oecologia 2022; 199:367-376. [PMID: 35716234 DOI: 10.1007/s00442-022-05191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure. Here, we find that food-supplemented birds expended less energy than control birds because they spent more time at the colony. However, foraging trips of food-supplemented birds were only slightly shorter than control birds, implying that food-supplemented birds were limited by food availability at sea similarly to control birds. Late breeders expended less energy, suggesting that low-quality individuals may not intake the energy necessary for sustaining high-energy output. Food-supplemented birds had more offspring than control birds, but offspring number did not influence energy expenditure, supporting the idea that the birds reached an energy ceiling. Males and lighter birds expended more energy, possibly compensating for relatively higher energy intake. Chick-rearing birds were working near their maximum, with highest levels of expenditure for early-laying (high-quality) individuals foraging at sea. Due to fluctuating marine environments, kittiwakes may be forced to change their foraging behaviors to maintain the balance between reproduction and survival.
Collapse
Affiliation(s)
- Shirel R Kahane-Rapport
- College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, 92831, USA. .,Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Shannon Whelan
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Justine Ammendolia
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,Faculty of Graduate Studies, Interdisciplinary Studies, Dalhousie University, 6299 South St, Halifax, NS, B3H 4R2, Canada
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, 95516, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Shoshanah Jacobs
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
4
|
Knight K. GPS tracking insight into kittiwake muscle structure. J Exp Biol 2020. [DOI: 10.1242/jeb.239681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|