1
|
Zhang L, Zhang L, Liang H, Huang D, Ren M. Effects of Taurine and Vitamin C on the Improvement of Antioxidant Capacity, Immunity and Hypoxia Tolerance in Gibel Carp ( Carrassius auratus gibeilo). Antioxidants (Basel) 2024; 13:1169. [PMID: 39456423 PMCID: PMC11505248 DOI: 10.3390/antiox13101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
To investigate the effects of taurine and vitamin C on gibel carp (Carrassius auratus gibeilo), fish (41.85 ± 0.03 g) were fed three diets with 0% taurine + 0% vitamin C (D0), 0.1% taurine + 0% vitamin C (D1), and 0.1% taurine + 0.1% vitamin C (D2) for 8 weeks. Then 12-hour hypoxic stress test was conducted. The results showed that weight gain rate (WGR), specific growth rate (SGR), and sustained swimming time (SST) were significantly increased in the D2. CAT, SOD, T-AOC, and GSH were increased. GSH-Px and il-6 were decreased in D1 and D2. In hypoxia, CAT and T-AOC were decreased, while GSH, sod, and nrf2 were the highest in D1. Compared to normoxia, GSH-Px was increased, while SOD and MDA were decreased. Il-10 and nf-κb were increased. Vegf, epo, and ho-1 were increased and they all were higher than that in normoxia. The number of gill cell mitochondria and survival rate (SR) of gibel carp had an increasing trend but no significant difference among groups. In conclusion, taurine with vitamin C improved the growth and SST of gibel carp, and taurine and taurine with vitamin C improved antioxidant capacity, immunity, and hypoxia tolerance.
Collapse
Affiliation(s)
- Leimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
John JS, Christen DR, Flammer KL, Kendall TL, Nazario EC, Richter BP, Gill V, Williams TM. Conservation energetics of beluga whales: using resting and swimming metabolism to understand threats to an endangered population. J Exp Biol 2024; 227:jeb246899. [PMID: 38483264 PMCID: PMC11070638 DOI: 10.1242/jeb.246899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 05/08/2024]
Abstract
The balance between energetic costs and acquisition in free-ranging species is essential for survival, and provides important insights regarding the physiological impact of anthropogenic disturbances on wild animals. For marine mammals such as beluga whales (Delphinapterus leucas), the first step in modeling this bioenergetic balance requires an examination of resting and active metabolic demands. Here, we used open-flow respirometry to measure oxygen consumption during surface rest and submerged swimming by trained beluga whales, and compared these measurements with those of a commonly studied odontocete, the Atlantic bottlenose dolphin (Tursiops truncatus). Both resting metabolic rate (3012±126.0 kJ h-1) and total cost of transport (1.4±0.1 J kg-1 m-1) of beluga whales were consistent with predicted values for moderately sized marine mammals in temperate to cold-water environments, including dolphins measured in the present study. By coupling the rate of oxygen consumption during submerged swimming with locomotor metrics from animal-borne accelerometer tags, we developed predictive relationships for assessing energetic costs from swim speed, stroke rate and partial dynamic acceleration. Combining these energetic data with calculated aerobic dive limits for beluga whales (8.8 min), we found that high-speed responses to disturbance markedly reduce the whale's capacity for prolonged submergence, pushing the cetaceans to costly anaerobic performances that require prolonged recovery periods. Together, these species-specific energetic measurements for beluga whales provide two important metrics, gait-related locomotor costs and aerobic capacity limits, for identifying relative levels of physiological vulnerability to anthropogenic disturbances that have become increasingly pervasive in their Arctic habitats.
Collapse
Affiliation(s)
- Jason S. John
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | | | | | - Traci L. Kendall
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Emily C. Nazario
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Beau P. Richter
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Verena Gill
- NOAA Fisheries, 222 W. 7th Ave, Anchorage, AK 99501, USA
| | - Terrie M. Williams
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
3
|
Noren SR, Rosen DAS. What are the Metabolic Rates of Marine Mammals and What Factors Impact this Value: A review. CONSERVATION PHYSIOLOGY 2023; 11:coad077. [PMID: 37790839 PMCID: PMC10545007 DOI: 10.1093/conphys/coad077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Over the past several decades, scientists have constructed bioenergetic models for marine mammals to assess potential population-level consequences following exposure to a disturbance, stressor, or environmental change, such as under the Population Consequences of Disturbance (pCOD) framework. The animal's metabolic rate (rate of energy expenditure) is a cornerstone for these models, yet the cryptic lifestyles of marine mammals, particularly cetaceans, have limited our ability to quantify basal (BMR) and field (FMR) metabolic rates using accepted 'gold standard' approaches (indirect calorimeter via oxygen consumption and doubly labeled water, respectively). Thus, alternate methods have been used to quantify marine mammal metabolic rates, such as extrapolating from known allometric relationships (e.g. Kleiber's mouse to elephant curve) and developing predictive relationships between energy expenditure and physiological or behavioral variables. To understand our current knowledge of marine mammal metabolic rates, we conducted a literature review (1900-2023) to quantify the magnitude and variation of metabolic rates across marine mammal groups. A compilation of data from studies using 'gold standard' methods revealed that BMR and FMR of different marine mammal species ranges from 0.2 to 3.6 and 1.1 to 6.1 x Kleiber, respectively. Mean BMR and FMR varied across taxa; for both measures odontocete levels were intermediate to higher values for otariids and lower values of phocids. Moreover, multiple intrinsic (e.g. age, sex, reproduction, molt, individual) and extrinsic (e.g. food availability, water temperature, season) factors, as well as individual behaviors (e.g. animal at water's surface or submerged, activity level, dive effort and at-sea behaviors) impact the magnitude of these rates. This review provides scientists and managers with a range of reliable metabolic rates for several marine mammal groups as well as an understanding of the factors that influence metabolism to improve the discernment for inputs into future bioenergetic models.
Collapse
Affiliation(s)
- S R Noren
- Institute of Marine Science, University of California Santa Cruz, Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - David A S Rosen
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
4
|
McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226:297166. [PMID: 36916459 DOI: 10.1242/jeb.245272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Total energy expenditure (TEE) represents the total energy allocated to growth, reproduction and body maintenance, as well as the energy expended on physical activity. Early experimental work in animal energetics focused on the costs of specific tasks (basal metabolic rate, locomotion, reproduction), while determination of TEE was limited to estimates from activity budgets or measurements of subjects confined to metabolic chambers. Advances in recent decades have enabled measures of TEE in free-living animals, challenging traditional additive approaches to understanding animal energy budgets. Variation in lifestyle and activity level can impact individuals' TEE on short time scales, but interspecific differences in TEE are largely shaped by evolution. Here, we review work on energy expenditure across the animal kingdom, with a particular focus on endotherms, and examine recent advances in primate energetics. Relative to other placental mammals, primates have low TEE, which may drive their slow pace of life and be an evolved response to the challenges presented by their ecologies and environments. TEE variation among hominoid primates appears to reflect adaptive shifts in energy throughput and allocation in response to ecological pressures. As the taxonomic breadth and depth of TEE data expand, we will be able to test additional hypotheses about how energy budgets are shaped by environmental pressures and explore the more proximal mechanisms that drive intra-specific variation in energy expenditure.
Collapse
Affiliation(s)
- Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Durham, NC 27708, USA
| |
Collapse
|
5
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|