1
|
Liu C, Wang H, Wang Z, Liang L, Li Y, Liu D, Lu Q. Distinct assembly processes of intestinal and non-intestinal microbes of bark beetles from clues of metagenomic insights. Sci Rep 2025; 15:7910. [PMID: 40050382 PMCID: PMC11885575 DOI: 10.1038/s41598-025-91621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Ips (Curculionidae: Scolytinae) bark beetles (BBs) are ecologically and economically devastating coniferous pests in the Northern Hemisphere. Although the microbial diversity associated with these beetles has been well studied, mechanisms of community assembly and the functional roles of key microbes remain poorly understood. This study investigates the microbial community structures and functions in both intestinal and non-intestinal environments of five Ips BBs using a metagenomic approach. The findings reveal similar microbial community compositions, though the α-diversity of dominant taxa differs between intestinal and non-intestinal environments due to the variability in bark beetle species, host trees, and habitats. Intestinal microbial communities are predominantly shaped homogenizing dispersal (HD) and undominated processes (UP), whereas non-intestinal microbial communities are primarily driven by heterogeneous selection (HS). Functional analysis shows that genes and enzymes associated with steroid biosynthesis and oxidative phosphorylation are primarily found in non-intestinal fungal symbionts Ogataea, Wickerhamomyce, Ophiostoma, and Ceratocystis of Ips species. Genes and enzymes involved in degrading terpenoids, phenolic compounds, and polysaccharides are predominately found in the intestinal Acinetobacter, Erwinia, and Serratia. This study provides valuable and in-depth insights into the symbiotic relationships between Ips BBs and their microbial partners, enhancing our understanding of insect-microbe coevolution and suggesting new strategies for pest management.
Collapse
Affiliation(s)
- Caixia Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Zheng Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingyu Liang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Yaning Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Duanchong Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Bai Z, Fang J, Yu C, Zhang S, Liu F, Han F, Zhou G, Ma J, Kong X. Divergent Response of Two Bark Beetle-Fungal Symbiotic Systems to Host Monoterpenes Reflects Niche Partitioning Strategies. J Chem Ecol 2024; 50:994-1005. [PMID: 39167252 DOI: 10.1007/s10886-024-01535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
The successful establishment of bark beetle-fungus symbionts on plants is required to overcome host defenses. However, little is known about how different bark beetle-fungus symbionts adapt to different niches on the same host plant. Here, we investigated the niche partitioning mechanism of two co-occurring bark beetle-fungus symbiotic systems, Ips nitidus-Ophiostoma bicolor and Dendroctonus micans-Endoconidiophora laricicola, on Qinghai spruce (Picea crassifolia) tree. The lower niche of the spruce trunk inhabited by D. micans showed a higher content of monoterpenes than the upper niche of the trunk inhabited by I. nitidus. Dendroctonus micans showed greater tolerance and higher metabolic efficiency toward monoterpenes than I. nitidus. However, both beetle species showed a similar metabolic profile toward α-pinene, albeit with different levels of metabolites. Additionally, O. bicolor, transmitted by I. nitidus, showed a significantly higher tolerance to monoterpenes and pathogenicity to spruce trees than E. laricicola, transmitted by D. micans. In particular, monoterpenoid metabolites were observed to attenuate the inhibitory effect of high-dose α-pinene on E. laricicola, thus increasing its fitness in a high-dose monoterpene microhabitat. These results show that these two bark beetle-fungus symbionts have adapted to different niches, leading to fitness differences in niche distribution that are at least partly related to the different distribution of monoterpene concentration in the spruce trunk. This research provides a novel perspective for understanding the coevolution between bark beetle-fungus symbionts and their host plants.
Collapse
Affiliation(s)
- Zezhen Bai
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Chunmei Yu
- Forest Diseases and Pest Control and Quarantine General Station of Qinghai Province, Xining, 810007, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fuzhong Han
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Guorong Zhou
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Jianhua Ma
- Maixiu Forest Farm of Huangnan Prefecture of Qinghai Province, Huangnan, 811399, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
3
|
Hu J, Zhao C, Tan J, Lai S, Zhou Y, Dai L. Transcriptome analysis of Euwallacea interjectus reveals differentially expressed unigenes related to developmental stages and egg laying. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101100. [PMID: 37329642 DOI: 10.1016/j.cbd.2023.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Euwallacea interjectus (Curculionidae: Scolytinae) is an ambrosia beetle species in its early stages of research. Therefore, studying the related molecular mechanism associated with the development and egg laid is essential. Transcriptome sequencing was used in this study to compare the gene expression of the beetles at different developmental stages and female adults before and after oviposition. A total of 40,047 annotated unigenes were obtained. There were 4225 differentially expressed unigenes (DEUs) from larva to prepupa stage, 3651 DEUs between prepupa and pupa, 1675 DEUs generated from pupa to adult, and 4762 DEUs between females before and after oviposition. The most significant pathway differences between different development stages and before and after oviposition were selected through functional annotation of DEUs between different stages. Among them, there were many pathways related to protein metabolism including: neuroactive ligand-receptor interaction, endoplasmic reticulum and RNA transport. This study provides valuable information on the molecular regulation mechanism of development and the egg laid of E. interjectus.
Collapse
Affiliation(s)
- Jiafeng Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Chen Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Jiajin Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Shengchang Lai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Yang Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China
| | - Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210036, China; College of Forestry, Nanjing Forestry University, Nanjing 210036, China.
| |
Collapse
|
4
|
Jiang XL, Ren Z, Hai XX, Zhang L, Wang ZG, Lyu F. Exposure to artificial light at night mediates the locomotion activity and oviposition capacity of Dastarcus helophoroides (Fairmaire). Front Physiol 2023; 14:1063601. [PMID: 36846342 PMCID: PMC9947650 DOI: 10.3389/fphys.2023.1063601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Light entrains the endogenous circadian clocks of organisms to synchronize their behavioral and physiological rhythms with the natural photoperiod. The presence of artificial light at night disrupts these photoperiodic cues and is currently considered to be a major threat to key fitness-related behaviors, including sleep disruption and physiological stress. Research on the ecological influence of forest pest and their natural enemies is lacking. The wood-boring insects significantly damage forest and urban forest ecosystem functions. The parasitic beetles, Dastarcus helophoroides is an important natural enemy of wood-boring insects, especially those in the Cerambycidae family. However, the effect of artificial light at night on the locomotor rhythms and oviposition capacity of D. helophoroides has received little attention. To address this gap, diel changes in the locomotor activity and number of eggs laid by female D. helophoroides was analyzed under different light-dark (LD) cycles and temperatures. The results showed that the 24-h rhythmic of locomotor activity in these beetles was elevated in darkness and reduced under illumination, indicating that they are nocturnal insects. This activity has two major peaks, the evening (1-8 h after lights off) and morning (3.5-12.5 h after lights off) components, reflecting that light mediate regular changes in locomotor activity. Moreover, the circadian rhythms and active percentage were influenced by the illumination duration and temperature, especially constant light and 40°C. Females laid more eggs under the 16 L: 8 D cycles at 30°C than under the other combinations of photoperiod (including constant light and darkness) and temperature. Finally, the potential influence of exposure to four ecologically relevant intensities of artificial light at night (0, 1, 10 or 100 lx) on oviposition capacity was studied. The results showed that lifetime exposure to bright artificial light (1-100 lx) at night decreased the number of eggs laid relative to those laid with no lighting at night. These results demonstrate that chronic exposure to bright artificial light at night may influence the locomotor activity and oviposition capacity of this parasitic beetle.
Collapse
Affiliation(s)
- Xiang-lan Jiang
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Zhe Ren
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xiao-xia Hai
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Ling Zhang
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, Hebei, China
| | - Zhi-gang Wang
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Fei Lyu
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China,*Correspondence: Fei Lyu,
| |
Collapse
|
5
|
Insights into the Divergence of Chinese Ips Bark Beetles during Evolutionary Adaptation. BIOLOGY 2022; 11:biology11030384. [PMID: 35336758 PMCID: PMC8945085 DOI: 10.3390/biology11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Bark beetle species of the genus Ips are among the major pests of Chinese conifer forests. Based on mitochondrial genome and SNP, we investigated the phylogenetic relationships and evolutionary trends of 19 populations of six Ips species that had serious outbreaks in recent years. Our results demonstrated the relationships between Ips evolution and host plants, pheromones, and altitudinal differences, and provided new insights into the mechanism of adaptive evolution of Ips bark beetles. Abstract Many bark beetles of the genus Ips are economically important insect pests that cause severe damage to conifer forests worldwide. In this study, sequencing the mitochondrial genome and restriction site-associated DNA of Ips bark beetles helps us understand their phylogenetic relationships, biogeographic history, and evolution of ecological traits (e.g., pheromones and host plants). Our results show that the same topology in phylogenetic trees constructed in different ways (ML/MP/BI) and with different data (mtDNA/SNP) helps us to clarify the phylogenetic relationships between Chinese Ips bark beetle populations and Euramerican species and their higher order clades; Ips bark beetles are polyphyletic. The structure of the mitochondrial genome of Ips bark beetles is similar and conserved to some extent, especially in the sibling species Ips typographus and Ips nitidus. Genetic differences among Ips species are mainly related to their geographic distribution and different hosts. The evolutionary pattern of aggregation pheromones of Ips species reflects their adaptations to the environment and differences among hosts in their evolutionary process. The evolution of Ips species is closely related to the uplift of the Qinghai-Tibet Plateau and host switching. Our study addresses the evolutionary trend and phylogenetic relationships of Ips bark beetles in China, and also provides a new perspective on the evolution of bark beetles and their relationships with host plants and pheromones.
Collapse
|