1
|
Salvi E, Moyroud E. Building beauty: Understanding how hormone signaling regulates petal patterning and morphogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70101. [PMID: 40106266 PMCID: PMC11922171 DOI: 10.1111/tpj.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The corolla of flowering plants provides pivotal functions for the reproduction of angiosperms, directly impacting the fitness of individuals. Different petal shapes and patterns contribute to these functions and, thus, participate in the production of morphological diversity and the emergence of new species. During petal morphogenesis, the coordination of cell fate specification, cell division, and cell expansion is coherent and robust across the petal blade and is set according to proximo-distal, medio-lateral, and abaxial-adaxial axes. However, the mechanisms specifying petal polarity and controlling cell behavior in a position-dependent manner as petals develop remain poorly understood. In this review, we draw parallels with other evolutionarily related plant lateral organs such as leaves to argue that hormones likely play central, yet largely unexplored, roles in such coordination. By examining petal development in Arabidopsis and other angiosperms, we frame what are the knowns and the unknowns of hormones contributions to petal morphogenesis and patterning. Finally, we argue that using emerging model organisms can provide invaluable information to tackle questions that have long remained unanswered, broadening our understanding by allowing us to investigate petal morphogenesis and the tinkering of phytohormone signaling through an evolutionary lens.
Collapse
Affiliation(s)
- Elena Salvi
- The Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
- Department of BiologyUniversity of PisaVia Luca Ghini 13Pisa56126Italy
| | - Edwige Moyroud
- The Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
| |
Collapse
|
2
|
Giri G, Nagloo N, Enjin A. A dynamic humidity arena to explore humidity-related behaviours in insects. J Exp Biol 2024; 227:jeb247195. [PMID: 39319429 PMCID: PMC11529877 DOI: 10.1242/jeb.247195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Humidity is a critical environmental factor influencing the behaviour of terrestrial organisms. Despite its significance, the neural mechanisms and behavioural algorithms governing humidity sensation remain poorly understood. Here, we introduce a dynamic humidity arena that measures the displacement and walking speed of insects responding to real-time changes in relative humidity (RH). This arena operates in a closed-loop mode, adjusting humidity based on the insect's position with 0.2% RH resolution, allowing the insect to choose its optimal humidity. It can also be set to maintain a specific RH, simulating an open-loop condition to observe insect behaviour at constant humidity levels. Using the dynamic humidity arena, we found that desiccated and starved Drosophila melanogaster search for a RH of around 65-70% at 23°C, whereas sated flies show no unique preference for any RH. If the desiccated and starved flies are rehydrated, their searching behaviour is abolished, suggesting that desiccation has a great impact on the measured response. In contrast, mutant flies with impaired humidity sensing, due to a non-functional ionotropic receptor (Ir)93a, show no preference for any RH level irrespective of being desiccated and starved or sated. These results demonstrate that the dynamic humidity arena is highly sensitive and precise in capturing the nuanced behaviours associated with hydration status and RH preference in D. melanogaster. The dynamic humidity arena is easily adaptable to insects of other sizes and offers a foundation for further research on the mechanisms of hygrosensation, opening new possibilities for understanding how organisms perceive and respond to humidity in their environment.
Collapse
Affiliation(s)
- Ganesh Giri
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Nicolas Nagloo
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Reeves LA, Jarvis EM, Lawson DA, Rands SA. The behavioural responses of bumblebees Bombus terrestris to simulated rain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231882. [PMID: 39076813 PMCID: PMC11285764 DOI: 10.1098/rsos.231882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/31/2024]
Abstract
Bumblebee activity typically decreases during rainfall, putting them under the threat of the increased frequency of precipitation due to climate change. A novel rain machine was used within a flight arena to observe the behavioural responses of bumblebees (Bombus terrestris) to simulated rain at both a colony and individual level. During rainfall, a greater proportion of workers left the arena than entered, the opposite of which was seen during dry periods, implying that they compensate for their lack of activity when conditions improve. The proportion of workers flying and foraging decreased while resting increased in rain. This pattern reversed during dry periods, providing further evidence for compensatory activity. The increase in resting behaviour during rain is thought to evade the high energetic costs of flying while wet without unnecessarily returning to the nest. This effect was not repeated in individual time budgets, measured with lone workers, suggesting that the presence of conspecifics accelerates the decision of their behavioural response, perhaps via local enhancement. Bumblebees probably use social cues to strategize their energetic expenditure during precipitation, allowing them to compensate for the reduced foraging activity during rainfall when conditions improve.
Collapse
Affiliation(s)
- Laura A. Reeves
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, ReadingRG6 6AJ, UK
| | - Ellie M. Jarvis
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, UK
| | - David A. Lawson
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| | - Sean A. Rands
- School of Biological Science, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
4
|
Rands SA, Whitney HM, Hempel de Ibarra N. Multimodal floral recognition by bumblebees. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101086. [PMID: 37468044 DOI: 10.1016/j.cois.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Flowers present information to their insect visitors in multiple simultaneous sensory modalities. Research has commonly focussed on information presented in visual and olfactory modalities. Recently, focus has shifted towards additional 'invisible' information, and whether information presented in multiple modalities enhances the interaction between flowers and their visitors. In this review, we highlight work that addresses how multimodality influences behaviour, focussing on work conducted on bumblebees (Bombus spp.), which are often used due to both their learning abilities and their ability to use multiple sensory modes to identify and differentiate between flowers. We review the evidence for bumblebees being able to use humidity, electrical potential, surface texture and temperature as additional modalities, and consider how multimodality enhances their performance. We consider mechanisms, including the cross-modal transfer of learning that occurs when bees are able to transfer patterns learnt in one modality to an additional modality without additional learning.
Collapse
Affiliation(s)
- Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom.
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
5
|
Salzman S, Dahake A, Kandalaft W, Valencia-Montoya WA, Calonje M, Specht CD, Raguso RA. Cone humidity is a strong attractant in an obligate cycad pollination system. Curr Biol 2023; 33:1654-1664.e4. [PMID: 37015222 DOI: 10.1016/j.cub.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Studies of pollination biology often focus on visual and olfactory aspects of attraction, with few studies addressing behavioral responses and morphological adaptation to primary metabolic attributes. As part of an in-depth study of obligate nursery pollination of cycads, we find that Rhopalotria furfuracea weevils show a strong physiological response and behavioral orientation to the cone humidity of the host plant Zamia furfuracea in an equally sensitive manner to their responses to Z. furfuracea-produced cone volatiles. Our results demonstrate that weevils can perceive fine-scale differences in relative humidity (RH) and that individuals exhibit a strong behavioral preference for higher RH in binary choice assays. Host plant Z. furfuracea produces a localized cloud of higher than ambient humidity around both pollen and ovulate cones, and R. furfuracea weevils preferentially land at the zone of maximum humidity on ovulate cones, i.e., the cracks between rows of megasporophylls that provide access to the ovules. Moreover, R. furfuracea weevils exhibit striking antennal morphological traits associated with RH perception, suggesting the importance of humidity sensing in the evolution of this insect lineage. Results from this study suggest that humidity functions in a signal-like fashion in this highly specialized pollination system and help to characterize a key pollination-mediating trait in an ancient plant lineage.
Collapse
Affiliation(s)
- Shayla Salzman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA.
| | - Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - William Kandalaft
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Dahake A, Jain P, Vogt CC, Kandalaft W, Stroock AD, Raguso RA. A signal-like role for floral humidity in a nocturnal pollination system. Nat Commun 2022; 13:7773. [PMID: 36522313 PMCID: PMC9755274 DOI: 10.1038/s41467-022-35353-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Previous studies have considered floral humidity to be an inadvertent consequence of nectar evaporation, which could be exploited as a cue by nectar-seeking pollinators. By contrast, our interdisciplinary study of a night-blooming flower, Datura wrightii, and its hawkmoth pollinator, Manduca sexta, reveals that floral relative humidity acts as a mutually beneficial signal in this system. The distinction between cue- and signal-based functions is illustrated by three experimental findings. First, floral humidity gradients in Datura are nearly ten-fold greater than those reported for other species, and result from active (stomatal conductance) rather than passive (nectar evaporation) processes. These humidity gradients are sustained in the face of wind and are reconstituted within seconds of moth visitation, implying substantial physiological costs to these desert plants. Second, the water balance costs in Datura are compensated through increased visitation by Manduca moths, with concomitant increases in pollen export. We show that moths are innately attracted to humid flowers, even when floral humidity and nectar rewards are experimentally decoupled. Moreover, moths can track minute changes in humidity via antennal hygrosensory sensilla but fail to do so when these sensilla are experimentally occluded. Third, their preference for humid flowers benefits hawkmoths by reducing the energetic costs of flower handling during nectar foraging. Taken together, these findings suggest that floral humidity may function as a signal mediating the final stages of floral choice by hawkmoths, complementing the attractive functions of visual and olfactory signals beyond the floral threshold in this nocturnal plant-pollinator system.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Piyush Jain
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Caleb C Vogt
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - William Kandalaft
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Abraham D Stroock
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
8
|
Hunting ER, England SJ, Koh K, Lawson DA, Brun NR, Robert D. Synthetic fertilizers alter floral biophysical cues and bumblebee foraging behavior. PNAS NEXUS 2022; 1:pgac230. [PMID: 36712354 PMCID: PMC9802097 DOI: 10.1093/pnasnexus/pgac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
The use of agrochemicals is increasingly recognized as interfering with pollination services due to its detrimental effects on pollinators. Compared to the relatively well-studied chemical toxicity of agrochemicals, little is known on how they influence various biophysical floral cues that are used by pollinating insects to identify floral rewards. Here, we show that widely used horticultural and agricultural synthetic fertilizers affect bumblebee foraging behavior by altering a complex set of interlinked biophysical properties of the flower. We provide empirical and model-based evidence that synthetic fertilizers recurrently alter the magnitude and dynamics of floral electrical cues, and that similar responses can be observed with the neonicotinoid pesticide imidacloprid. We show that biophysical responses interact in modifying floral electric fields and that such changes reduce bumblebee foraging, reflecting a perturbation in the sensory events experienced by bees during flower visitation. This unveils a previously unappreciated anthropogenic interference elicited by agrochemicals within the electric landscape that is likely relevant for a wide range of chemicals and organisms that rely on naturally occurring electric fields.
Collapse
Affiliation(s)
| | - Sam J England
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Kuang Koh
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Dave A Lawson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
9
|
Harrison AS, Rands SA. The Ability of Bumblebees Bombus terrestris (Hymenoptera: Apidae) to Detect Floral Humidity is Dependent Upon Environmental Humidity. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1010-1019. [PMID: 35899458 PMCID: PMC9585368 DOI: 10.1093/ee/nvac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/15/2023]
Abstract
Flowers produce local humidity that is often greater than that of the surrounding environment, and studies have shown that insect pollinators may be able to use this humidity difference to locate and identify suitable flowers. However, environmental humidity is highly heterogeneous, and is likely to affect the detectability of floral humidity, potentially constraining the contexts in which it can be used as a salient communication pathway between plants and their pollinators. In this study, we use differential conditioning techniques on bumblebees Bombus terrestris audax (Harris) to explore the detectability of an elevated floral humidity signal when presented against different levels of environmental noise. Artificial flowers were constructed that could be either dry or humid, and individual bumblebees were presented with consistent rewards in either the humid or dry flowers presented in an environment with four levels of constant humidity, ranging from low (~20% RH) to highly saturated (~95% RH). Ability to learn was dependent upon both the rewarding flower type and the environment: the bumblebees were able to learn rewarding dry flowers in all environments, but their ability to learn humid rewarding flowers was dependent on the environmental humidity, and they were unable to learn humid rewarding flowers when the environment was highly saturated. This suggests that floral humidity might be masked from bumblebees in humid environments, suggesting that it may be a more useful signal to insect pollinators in arid environments.
Collapse
Affiliation(s)
- Amy S Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | | |
Collapse
|
10
|
Nicholls E, Rands SA, Botías C, Hempel de Ibarra N. Flower sharing and pollinator health: a behavioural perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210157. [PMID: 35491598 DOI: 10.1098/rstb.2021.0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease is an integral part of any organisms' life, and bees have evolved immune responses and a suite of hygienic behaviours to keep them at bay in the nest. It is now evident that flowers are another transmission hub for pathogens and parasites, raising questions about adaptations that help pollinating insects stay healthy while visiting hundreds of plants over their lifetime. Drawing on recent advances in our understanding of how bees of varying size, dietary specialization and sociality differ in their foraging ranges, navigational strategies and floral resource preferences, we explore the behavioural mechanisms and strategies that may enable foraging bees to reduce disease exposure and transmission risks at flowers by partitioning overlapping resources in space and in time. By taking a novel behavioural perspective, we highlight the missing links between disease biology and the ecology of plant-pollinator relationships, critical for improving the understanding of disease transmission risks and the better design and management of habitat for pollinator conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- E Nicholls
- Evolution, Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - S A Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, 19180 Guadalajara, Spain
| | - N Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
11
|
Harrap MJM, Rands SA. The role of petal transpiration in floral humidity generation. PLANTA 2022; 255:78. [PMID: 35246754 PMCID: PMC8897325 DOI: 10.1007/s00425-022-03864-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 05/11/2023]
Abstract
MAIN CONCLUSION Using petrolatum gel as an antitranspirant on the flowers of California poppy and giant bindweed, we show that transpiration provides a large contribution to floral humidity generation. Floral humidity, an area of elevated humidity in the headspace of flowers, is believed to be produced predominantly through a combination of evaporation of liquid nectar and transpirational water loss from the flower. However, the role of transpiration in floral humidity generation has not been directly tested and is largely inferred by continued humidity production when nectar is removed from flowers. We test whether transpiration contributes to the floral humidity generation of two species previously identified to produce elevated floral humidity, Calystegia silvatica and Eschscholzia californica. Floral humidity production of flowers that underwent an antitranspirant treatment, petrolatum gel which blocks transpiration from treated tissues, is compared to flowers that did not receive such treatments. Gel treatments reduced floral humidity production to approximately a third of that produced by untreated flowers in C. silvatica, and half of that in E. californica. This confirms the previously untested inferences that transpiration has a large contribution to floral humidity generation and that this contribution may vary between species.
Collapse
Affiliation(s)
- Michael J M Harrap
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
- The John Krebs Field Station, University of Oxford, Wytham, Oxford, OX2 8QJ, UK.
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
12
|
Langridge KV, Wilke C, Riabinina O, Vorobyev M, Hempel de Ibarra N. Approach Direction Prior to Landing Explains Patterns of Colour Learning in Bees. Front Physiol 2021; 12:697886. [PMID: 34955870 PMCID: PMC8692860 DOI: 10.3389/fphys.2021.697886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Gaze direction is closely coupled with body movement in insects and other animals. If movement patterns interfere with the acquisition of visual information, insects can actively adjust them to seek relevant cues. Alternatively, where multiple visual cues are available, an insect's movements may influence how it perceives a scene. We show that the way a foraging bumblebee approaches a floral pattern could determine what it learns about the pattern. When trained to vertical bicoloured patterns, bumblebees consistently approached from below centre in order to land in the centre of the target where the reward was located. In subsequent tests, the bees preferred the colour of the lower half of the pattern that they predominantly faced during the approach and landing sequence. A predicted change of learning outcomes occurred when the contrast line was moved up or down off-centre: learned preferences again reflected relative frontal exposure to each colour during the approach, independent of the overall ratio of colours. This mechanism may underpin learning strategies in both simple and complex visual discriminations, highlighting that morphology and action patterns determines how animals solve sensory learning tasks. The deterministic effect of movement on visual learning may have substantially influenced the evolution of floral signals, particularly where plants depend on fine-scaled movements of pollinators on flowers.
Collapse
Affiliation(s)
- Keri V. Langridge
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | - Claudia Wilke
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
| | - Olena Riabinina
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Misha Vorobyev
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Natalie Hempel de Ibarra
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Hempel de Ibarra N, Rands S. Pollination: Influencing bee behaviour with caffeine. Curr Biol 2021; 31:R1090-R1092. [PMID: 34582818 DOI: 10.1016/j.cub.2021.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Plant secondary metabolites found in floral nectar can affect the behaviour of pollinating insects, but how these changes benefit plants directly is little understood. An experimental study with bumblebees shows that recalling a caffeine-enhanced odour memory can increase flower visitation.
Collapse
Affiliation(s)
| | - Sean Rands
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Knight K. Bumblebees feel bloom humidity when choosing where to sip. J Exp Biol 2021. [DOI: 10.1242/jeb.242890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|