1
|
Heuel KC, Haßlberger TA, Ayasse M, Burger H. Floral Trait Preferences of Three Common wild Bee Species. INSECTS 2024; 15:427. [PMID: 38921142 PMCID: PMC11203783 DOI: 10.3390/insects15060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
The interaction between bees and flowering plants is mediated by floral cues that enable bees to find foraging plants. We tested floral cue preferences among three common wild bee species: Lasioglossum villosulum, Osmia bicornis, and Bombus terrestris. Preferences are well studied in eusocial bees but almost unknown in solitary or non-eusocial generalist bee species. Using standardized artificial flowers altered in single cues, we tested preferences for color hue, achromatic contrast, scent complexity, corolla size, and flower depth. We found common attractive cues among all tested bees. Intensively colored flowers and large floral displays were highly attractive. No preferences were observed in scent complexity experiments, and the number of volatiles did not influence the behavior of bees. Differing preferences were found for color hue. The specific behaviors were probably influenced by foraging experience and depended on the flower choice preferences of the tested bee species. In experiments testing different flower depths of reward presentation, the bees chose flat flowers that afforded low energy costs. The results reveal that generalist wild bee species other than well-studied honeybees and bumblebees show strong preferences for distinct floral cues to find potential host plants. The diverse preferences of wild bees ensure the pollination of various flowering plants.
Collapse
Affiliation(s)
- Kim C. Heuel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, 89077 Ulm, Germany (M.A.); (H.B.)
| | | | | | | |
Collapse
|
2
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Ghaninia M, Zhou Y, Knauer AC, Schiestl FP, Sharpee TO, Smith BH. Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants and bees. PLoS One 2022; 17:e0270358. [PMID: 35830455 PMCID: PMC9278781 DOI: 10.1371/journal.pone.0270358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Animals use odors in many natural contexts, for example, for finding mates or food, or signaling danger. Most analyses of natural odors search for either the most meaningful components of a natural odor mixture, or they use linear metrics to analyze the mixture compositions. However, we have recently shown that the physical space for complex mixtures is ‘hyperbolic’, meaning that there are certain combinations of variables that have a disproportionately large impact on perception and that these variables have specific interpretations in terms of metabolic processes taking place inside the flower and fruit that produce the odors. Here we show that the statistics of odorants and odorant mixtures produced by inflorescences (Brassica rapa) are also better described with a hyperbolic rather than a linear metric, and that combinations of odorants in the hyperbolic space are better predictors of the nectar and pollen resources sought by bee pollinators than the standard Euclidian combinations. We also show that honey bee and bumble bee antennae can detect most components of the B. rapa odor space that we tested, and the strength of responses correlates with positions of odorants in the hyperbolic space. In sum, a hyperbolic representation can be used to guide investigation of how information is represented at different levels of processing in the CNS.
Collapse
Affiliation(s)
- Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Yuansheng Zhou
- The Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, CA, United States of America
- University of California, San Diego, La Jolla, CA, United States of America
| | - Anina C. Knauer
- Institute of Systematic and Evolutionary Botany University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Florian P. Schiestl
- Institute of Systematic and Evolutionary Botany University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Tatyana O. Sharpee
- The Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, CA, United States of America
- University of California, San Diego, La Jolla, CA, United States of America
- * E-mail: (TOS); , (BHS)
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- * E-mail: (TOS); , (BHS)
| |
Collapse
|
4
|
Bisch-Knaden S, Rafter MA, Knaden M, Hansson BS. Unique neural coding of crucial versus irrelevant plant odors in a hawkmoth. eLife 2022; 11:77429. [PMID: 35622402 PMCID: PMC9142141 DOI: 10.7554/elife.77429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
The sense of smell is pivotal for nocturnal moths to locate feeding and oviposition sites. However, these crucial resources are often rare and their bouquets are intermingled with volatiles emanating from surrounding ‘background’ plants. Here, we asked if the olfactory system of female hawkmoths, Manduca sexta, could differentiate between crucial and background cues. To answer this question, we collected nocturnal headspaces of numerous plants in a natural habitat of M. sexta. We analyzed the chemical composition of these headspaces and used them as stimuli in physiological experiments at the antenna and in the brain. The intense odors of floral nectar sources evoked strong responses in virgin and mated female moths, most likely enabling the localization of profitable flowers at a distance. Bouquets of larval host plants and most background plants, in contrast, were subtle, thus potentially complicating host identification. However, despite being subtle, antennal responses and brain activation patterns evoked by the smell of larval host plants were clearly different from those evoked by other plants. Interestingly, this difference was even more pronounced in the antennal lobe of mated females, revealing a status-dependent tuning of their olfactory system towards oviposition sites. Our study suggests that female moths possess unique neural coding strategies to find not only conspicuous floral cues but also inconspicuous bouquets of larval host plants within a complex olfactory landscape.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | | | - Markus Knaden
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|