1
|
Rajeswari JJ, Gilbert GNY, Khalid E, Vijayan MM. Brain monoamine changes modulate the corticotropin-releasing hormone receptor 1-mediated behavioural response to acute thermal stress in zebrafish larvae. Mol Cell Endocrinol 2025; 600:112494. [PMID: 39956313 DOI: 10.1016/j.mce.2025.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
While central monoamines play a role in regulating stress-related locomotory activity, the modulation of monoamines by the corticosteroid stress axis in shaping acute behavioural responses are unclear. We investigated whether the corticotropin-releasing hormone receptor 1 (Crhr1) modulation of stress-related behavioral response involves monoamine regulation by subjecting Crhr1 knockout (crhr1-/-) zebrafish (Danio rerio) to an acute thermal stressor (TS: +5 °C above ambient for 60 min). The TS-induced cortisol response and hyper locomotory activity in the WT larvae was abolished in fish lacking Crhr1. However, both genotypes induced a heat shock protein response to the TS. The crhr1-/- larvae showed a region-specific difference in the distribution of serotonin (5-HT)- and tyrosine hydroxylase-positive cells in the brain. This corresponded with increases in whole-body transcript abundance of dopamine beta-hydroxylase, tryptophan hydroxylase 2, and solute carrier family 6-member 4a. Cotreatment with either epinephrine or 5-HT, but not cortisol, was able to rescue the TS-mediated hypo locomotory activity and thigmotaxis seen in the crhr1-/- larvae. Together, these results indicate that Crhr1 is essential not only for mediating the TS-induced hyperactivity but also for maintaining the basal locomotory activity and anxiogenic response during stress. The latter response depends on the central monoamine regulation by Crhr1 in zebrafish larvae.
Collapse
Affiliation(s)
- Jithine J Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Geneece N Y Gilbert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Enezi Khalid
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
2
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Pan YK, Perry SF. Developing zebrafish utilize taste-signaling pathways for oxygen chemoreception. Curr Biol 2024; 34:4272-4284.e5. [PMID: 39260364 DOI: 10.1016/j.cub.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
A fundamental requirement for all animals is to sense and respond to changes in environmental O2 availability. Low O2 (hypoxia) typically stimulates breathing, a universal and critical response termed the hypoxic ventilatory response (HVR). In this study, we test the hypothesis that taste-signaling pathways are used for O2 sensing and activation of the HVR. We show that Merkel-like cells (MLCs), which are part of the taste-bud complex, function as O2 chemoreceptor cells in larval zebrafish and that transduction of the O2 signal uses taste-signaling pathways. Specifically, MLCs responded to hypoxia in vivo with an increase in Ca2+ activity that can drive the HVR. In addition, MLCs transmit O2 signals to afferent cranial nerves IX and X (nIX/X), which project into the area postrema within the hindbrain and synapse with interneurons that are in contact with vagal motor neurons. Hypoxia or chemo-activation of nIX/X caused Ca2+ activity to increase within the area postrema and elicited hyperventilation. The results provide the first demonstration of an O2 signaling pathway that commences with the activation of taste receptors (MLCs) to yield a critical physiological reflex, the HVR.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- University of Ottawa, Department of Biology, 10 Marie-Curie Private, Ottawa, ON K1N 9A4, Canada.
| | - Steve F Perry
- University of Ottawa, Department of Biology, 10 Marie-Curie Private, Ottawa, ON K1N 9A4, Canada.
| |
Collapse
|
4
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
5
|
Joyce W, Warwicker J, Shiels HA, Perry SF. Evolution and divergence of teleost adrenergic receptors: why sometimes 'the drugs don't work' in fish. J Exp Biol 2023; 226:jeb245859. [PMID: 37823524 DOI: 10.1242/jeb.245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
6
|
Pan YK, Perry SF. The control of breathing in fishes - historical perspectives and the path ahead. J Exp Biol 2023; 226:307288. [PMID: 37097020 DOI: 10.1242/jeb.245529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The study of breathing in fishes has featured prominently in Journal of Experimental Biology (JEB), particularly during the latter half of the past century. Indeed, many of the seminal discoveries in this important sub-field of comparative respiratory physiology were reported first in JEB. The period spanning 1960-1990 (the 'golden age of comparative respiratory physiology') witnessed intense innovation in the development of methods to study the control of breathing. Many of the guiding principles of piscine ventilatory control originated during this period, including our understanding of the dominance of O2 as the driver of ventilation in fish. However, a critical issue - the identity of the peripheral O2 chemoreceptors - remained unanswered until methods for cell isolation, culture and patch-clamp recording established that gill neuroepithelial cells (NECs) respond to hypoxia in vitro. Yet, the role of the NECs and other putative peripheral or central chemoreceptors in the control of ventilation in vivo remains poorly understood. Further progress will be driven by the implementation of genetic tools, most of which can be used in zebrafish (Danio rerio). These tools include CRISPR/Cas9 for selective gene knockout, and Tol2 systems for transgenesis, the latter of which enables optogenetic stimulation of cellular pathways, cellular ablation and in vivo cell-specific biosensing. Using these methods, the next period of discovery will see the identification of the peripheral sensory pathways that initiate ventilatory responses, and will elucidate the nature of their integration within the central nervous system and their link to the efferent motor neurons that control breathing.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|