1
|
Krzywoń L, Lazaris A, Petrillo SK, Zlotnik O, Gao ZH, Metrakos P. Histopathological Growth Patterns Determine the Outcomes of Colorectal Cancer Liver Metastasis Following Liver Resection. Cancers (Basel) 2024; 16:3148. [PMID: 39335120 PMCID: PMC11430747 DOI: 10.3390/cancers16183148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Colorectal cancer liver metastasis (CRCLM) remains a lethal diagnosis, with an overall 5-year survival rate of 5-10%. Two distinct histopathological growth patterns (HGPs) of CRCLM are known to have significantly differing rates of patient survival and response to treatment. We set out to review the results of 275 patients who underwent liver resection for CRCLM at the McGill University Health Center (MUHC) and analyze their clinical outcome, mutational burden, and pattern of cancer progression in light of their HGPs, and to consider their potential effect on surgical decision making. METHODS We performed a retrospective multivariate analysis on clinical data from patients with CRCLM (n = 275) who underwent liver resection at the McGill University Health Center (MUHC). All tumors were scored using international consensus guidelines by pathologists trained in HGP scoring. RESULTS A total of 109 patients (42.2%) were classified as desmoplastic and angiogenic, whereas 149 patients (57.7%) were non-desmoplastic and vessel co-opting. The 5-year survival rates for angiogenic patients compared with vessel co-opting patients were 47.1% and 13%, respectively (p < 0.0001). Multivariate analysis showed patients with vessel co-opting CRCLM had a higher incidence of extrahepatic metastatic disease (p = 0.0215) compared with angiogenic CRCLM. Additionally, KRAS mutation status was a marker of increased likelihood of disease recurrence (p = 0.0434), as was increased number of liver tumors (p = 0.0071) and multiple sites of extrahepatic metastatic disease (p < 0.0001). CONCLUSIONS Multivariate analysis identified key clinical prognostic and molecular features correlating with the two HGPs. Determining liver tumor HGPs is essential for patient prognostication and treatment optimization.
Collapse
Affiliation(s)
- Lucyna Krzywoń
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
- Department of Experimental Surgery, McGill University, 1650 Cedar Ave., Room A7.117, Montreal, QC H4A 3J1, Canada
| | - Anthoula Lazaris
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
| | - Stephanie K Petrillo
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
| | - Oran Zlotnik
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
- Department of Experimental Surgery, McGill University, 1650 Cedar Ave., Room A7.117, Montreal, QC H4A 3J1, Canada
| | - Zu-Hua Gao
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
- Department of Pathology and Labaratory Medicine, University of British Columbia, Rm. G227-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
- McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Peter Metrakos
- Cancer Research Program, Research Institute of McGill University Health Center Glen Site, McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd Room E02.6218, Montreal, QC H4A 3J1, Canada
- McGill University Health Center, Royal Victoria Hospital-Glen Site, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Ma XR, Lu JJ, Huang B, Lu XY, Li RT, Ye RR. Heteronuclear Ru(II)-Re(I) complexes as potential photodynamic anticancer agents with anti-metastatic and anti-angiogenic activities. J Inorg Biochem 2023; 240:112090. [PMID: 36543061 DOI: 10.1016/j.jinorgbio.2022.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Herein, three heterometallic Ru(II)-Re(I) complexes, [Ru(NN)2(tpphz)Re(CO)3Cl](PF6)2 (N-N = 2,2'-bipyridine (bpy, in RuRe1), 1,10-phenanthroline (phen, in RuRe2), 4,7-diphenyl-1,10-phenanthroline (DIP, in RuRe3), tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2″',3″'-j]phenazine), using tpphz as a bridging ligand to connect Ru(II) polypyridyl moiety and Re(I) tricarbonyl moiety were designed and synthesized. Cytotoxicity tests revealed that RuRe1-3 exhibited high phototoxicities against several cancer cell lines tested, with IC50 values ranging from 0.8 to 6.8 μM. Notably, RuRe2 exhibited the most significant increase in cytotoxicity against human prostate cancer (PC3) cells under light (450 nm) irradiation, with phototoxicity index (PI) value increasing by >112.3-fold. Further mechanistic studies of RuRe2 revealed that RuRe2-mediated PDT could induce tumor cell apoptosis through the mitochondrial pathway. Moreover, RuRe2-mediated PDT could inhibit PC3 cell scratch healing and reduce the expression levels of matrix metalloproteinases 2 (MMP-2), matrix metalloproteinases 9 (MMP-9) and vascular endothelial growth factor receptor VEGFR2. Finally, angiogenic activity assays performed in human umbilical vein endothelial cells (HUVECs) showed that RuRe2 exerted an anti-angiogenesis effect. Our study demonstrated that RuRe1-3 were promising PDT antitumor agents with potential anti-metastatic and anti-angiogenic activities.
Collapse
Affiliation(s)
- Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China.
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
3
|
Characterization and Evaluation of Rapamycin-Loaded Nano-Micelle Ophthalmic Solution. J Funct Biomater 2023; 14:jfb14010049. [PMID: 36662096 PMCID: PMC9862165 DOI: 10.3390/jfb14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Rapamycin-loaded nano-micelle ophthalmic solution (RAPA-NM) offers a promising application for preventing corneal allograft rejection; however, RAPA-NM has not yet been fully characterized. This study aimed to evaluate the physicochemical properties, biocompatibility, and underlying mechanism of RAPA-NM in inhibiting corneal allograft rejection. An optimized RAPA-NM was successfully prepared using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer as the excipient at a PVCL-PVA-PEG/RAPA weight ratio of 18:1. This formulation exhibited high encapsulation efficiency (99.25 ± 0.55%), small micelle size (64.42 ± 1.18 nm), uniform size distribution (polydispersity index = 0.076 ± 0.016), and a zeta potential of 1.67 ± 0.93 mV. The storage stability test showed that RAPA-NM could be stored steadily for 12 weeks. RAPA-NM also displayed satisfactory cytocompatibility and high membrane permeability. Moreover, topical administration of RAPA-NM could effectively prevent corneal allograft rejection. Mechanistically, a transcriptomic analysis revealed that several immune- and inflammation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the downregulated genes in the RAPA-NM-treated allografts compared with the rejected allogenic corneal grafts. Taken together, these findings highlight the potential of RAPA-NM in treating corneal allograft rejection and other ocular inflammatory diseases.
Collapse
|
4
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
5
|
Liver transplantation for non-resectable colorectal liver metastasis: where we are and where we are going. Langenbecks Arch Surg 2020; 405:255-264. [PMID: 32333096 DOI: 10.1007/s00423-020-01883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Almost 50% of patients diagnosed with colorectal cancer (CRC) will develop liver metastasis (LM). Although their only long-term curative treatment is surgery, less than half of these patients can be eventually resected. Therefore, palliative chemotherapy is offered as a definitive option, though with poor results. Recently, the University of Oslo group has published encouraging results in the treatment of these patients with liver transplantation (LT), whereby worldwide interest in this option has been renewed. METHODS A literature review of LT for patients with unresectable colorectal metastasis was performed. This included information regarding patient selection, complications, overall survival (OS) and disease-free survival (DFS), immunosuppression, chemotherapy, and description of the ongoing trials. RESULTS Improvements in OS and DFS have been observed in consecutive published prospective trials, as patient selection has been refined. Papers reporting OS of patients who randomly presented similar selection criteria also exhibited good results. CONCLUSION LT within the available therapeutic options in patients with CRC-LM seems to be a compelling alternative in carefully selected patients. The ongoing trials will provide valuable information regarding selection criteria, immunosuppressive therapy and different modalities of adjuvant chemotherapy, which are, to our knowledge, the vital platform of LT in CRC-LM. Although some of the developing techniques involve living donors, graft availability for these patients remains a matter of major concern.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss existing data on liver transplantation for colorectal liver metastasis, emerging controversies, and future directions. RECENT FINDINGS Contemporary experience with transplanting patients with liver metastasis from colon cancer is mainly derived from European centers, with a large proportion being from a single institution (SECA study), made possible in part by a relatively high donor pool. The initial results prove to be encouraging by demonstrating an overall survival advantage over unresectable patients with liver-limited disease managed with chemotherapy only. Recurrence patterns, however, suggest a need for better patient selection and treatment sequencing optimization. In North America, the main barriers in establishing similar protocols result from national liver graft shortage, which represents an issue of competing resources when indications have yet to be well defined. Evolving strategies in transplantation, such as the utilization of marginal liver grafts and living donor liver transplantation might constitute potential solutions. SUMMARY Evidence suggests a potential survival benefit of liver transplantation for a subset of patients with unresectable liver-limited CRLM. Further prospective trials are needed to clarify the role and feasibility of this treatment strategy in oncotransplantation.
Collapse
|
7
|
Nie X, Liu C, Guo Q, Zheng MJ, Gao LL, Li X, Liu DW, Zhu LC, Liu JJ, Lin B. TMEFF1 overexpression and its mechanism for tumor promotion in ovarian cancer. Cancer Manag Res 2019; 11:839-855. [PMID: 30697076 PMCID: PMC6340504 DOI: 10.2147/cmar.s186080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1) has an anticarcinogenic effect in brain tumors. However, little is known about the role of TMEFF1 in epithelial ovarian cancer (EOC). Materials and methods TMEFF1 expression in EOC was detected by immunohistochemistry; its relationship with clinical pathological parameters and its influence on prognosis were analyzed. The MTT, scratch, Transwell assays, and flow cytometry were used to assess the malignant behavior of ovarian cancer cell. Changes in node proteins in MAPK and PI3K/AKT signaling pathways and the expression of epithelial–mesenchymal transformation markers were measured by Western blot. The regulatory effect of p53 on TMEFF1 was verified by chromatin immunoprecipitation (ChIP) assay and Western blot. Results TMEFF1 expression was higher in the EOC group than in the borderline and benign tumor groups and normal ovary group; its high expression was significantly related to International Federation of Gynecology and Obstetrics stage (P=0.024) and independently predicted shorter overall survival (P<0.01). TMEFF1 overexpression in ovarian cancer cells induced increased cellular proliferation, migration, and invasion but reduced apoptosis. In addition, the percentage of phosphorylated node proteins in MAPK and PI3K/AKT signaling pathways increased significantly. The expression of E-cadherin decreased but that of vimentin and N-cadherin increased. After the addition of MAPK (PD98059) and PI3K (GDC-0941) pathway inhibitors, ovarian cancer cells overexpressing TMEFF1 showed suppressed malignant behavior. TMEFF1 protein expression in an ovarian cancer cell lines (CAOV3 and ES-2) was downregulated after the inhibition of TP53. The transcription factor, p53, bound the promoter region of the TMEFF1 gene according to ChIP. Conclusion TMEFF1 is a carcinogenic gene in ovarian cancer and can be regulated by p53 transcription. Through MAPK and PI3K/AKT signaling pathways, TMEFF1 promotes the malignant behavior in EOC. Therefore, TMEFF1 may be considered as a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Cong Liu
- Department of Obstetrics and Gynaecology, Wuxi Materal and Child Health Hospital, Jiangsu, China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ming-Jun Zheng
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Ling-Ling Gao
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Da-Wo Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Lian-Cheng Zhu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Juan-Juan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Liaoning, China, .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China,
| |
Collapse
|
8
|
Govaert KM, Jongen JMJ, Kranenburg O, Borel Rinkes IHM. Surgery-induced tumor growth in (metastatic) colorectal cancer. Surg Oncol 2017; 26:535-543. [PMID: 29113675 DOI: 10.1016/j.suronc.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/15/2017] [Indexed: 12/26/2022]
Abstract
Metastatic colorectal cancer (mCRC) is a devastating disease causing 700.000 deaths annually worldwide. Metastases most frequently develop in the liver. Partial hepatectomy has dramatically improved clinical outcome and is the only curative treatment option for eligible patients with mCRC. Pre-clinical studies have shown that surgical procedures can have tumor-promoting local 'side-effects' such as hypoxia and inflammation, thereby altering the behaviour of residual tumor cells. In addition, systemically released factors following (colon or liver) surgery can act as a wakeup-call for dormant tumor cells in distant organs and/or help establish a pre-metastatic niche. Tumor handling during resection may also increase the number of circulating tumor cells. Despite the overwhelming amount of pre-clinical data demonstrating the pro-tumorigenic side effects of surgery, clinical evidence is scarce. Indications for hepatic surgery are rapidly increasing due to a rise in the incidence of mCRC and a trend towards more aggressive surgical treatment. Therefore, it is increasingly important to understand the principles of surgery-induced tumor growth, in order to devise perioperative or adjuvant strategies to further enhance long-term tumor control. In the current study we review the evidence for surgery-stimulated tumor growth and suggest strategies to assess the clinical relevance of such findings.
Collapse
Affiliation(s)
- Klaas M Govaert
- UMC Utrecht, Department of Surgical Oncology, Endocrine and GI Surgery, Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jennifer M J Jongen
- UMC Utrecht, Department of Surgical Oncology, Endocrine and GI Surgery, Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Onno Kranenburg
- UMC Utrecht, Division of Biomedical Genetics, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- UMC Utrecht, Department of Surgical Oncology, Endocrine and GI Surgery, Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Senger S, Sperling J, Oberkircher B, Schilling MK, Kollmar O, Menger MD, Ziemann C. Portal branch ligation does not counteract the inhibiting effect of temsirolimus on extrahepatic colorectal metastatic growth. Clin Exp Metastasis 2017. [PMID: 28631253 DOI: 10.1007/s10585-017-9852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mTor-inhibitor temsirolimus (TEM) has potent anti-tumor activities on extrahepatic colorectal metastases. Treatment of patients with advanced disease may require portal branch ligation (PBL). While PBL can induce intrahepatic tumor growth, the effect of PBL on extrahepatic metastases under TEM treatment is unknown. Therefore, we analyzed the effects of TEM treatment on extrahepatic metastases during PBL-associated liver regeneration. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of BALB/c-mice. Mice were randomized to four groups (n = 8). One was treated daily with TEM (1.5 mg/kg), PBS-treated animals served as controls. Another group underwent PBL of the left liver lobe and received daily TEM treatment. Animals with PBL and PBS treatment served as controls. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied over 14 days. In non-PBL animals TEM treatment inhibited tumor cell proliferation as well as vascularization and growth of the extrahepatic metastases. PBL did not influence tumor cell engraftment, vascularization and metastatic growth. Of interest, TEM treatment significantly reduced tumor cell engraftment, neovascularization and metastatic groth also after PBL. PBL does not counteract the inhibiting effect of TEM on extrahepatic colorectal metastatic growth.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of Neurosurgery, Saarland University, Homburg/Saar, Germany
| | - Jens Sperling
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Oberkircher
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Martin K Schilling
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Klinik St. Anna Ärztehaus Lützelmatt, Lucerne, Switzerland
| | - Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Department of General and Visceral Surgery, Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christian Ziemann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany.
- Department of Cardiovascular Surgery, University Heart Center, University Medical Center, University of Freiburg, Freiburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery and Institute for Clinical and Experimental Surgery, Saarland Medical School, Saarland University, Kirrberger Straße 1, 66424, Homburg/Saar, Germany.
| |
Collapse
|
10
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Fouraschen SMG, de Ruiter PE, Kwekkeboom J, de Bruin RWF, Kazemier G, Metselaar HJ, Tilanus HW, van der Laan LJW, de Jonge J. mTOR signaling in liver regeneration: Rapamycin combined with growth factor treatment. World J Transplant 2013; 3:36-47. [PMID: 24255881 PMCID: PMC3832859 DOI: 10.5500/wjt.v3.i3.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/28/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the effects of mammalian target of rapamycin (mTOR) inhibition on liver regeneration and autophagy in a surgical resection model.
METHODS: C57BL/6 mice were subjected to a 70% partial hepatectomy (PH) and treated intraperitoneally every 24 h with a combination of the mTOR inhibitor rapamycin (2.5 mg/kg per day) and the steroid dexamethasone (2.0 mg/kg per day) in phosphate buffered saline (PBS) or with PBS alone as vehicle control. In the immunosuppressant group, part of the group was treated subcutaneously 4 h prior to and 24 h after PH with a combination of human recombinant interleukin 6 (IL-6; 500 μg/kg per day) and hepatocyte growth factor (HGF; 100 μg/kg per day) in PBS. Animals were sacrificed 2, 3 or 5 d after PH and liver tissue and blood were collected for further analysis. Immunohistochemical staining for 5-Bromo-2’-deoxyuridine (BrdU) was used to quantify hepatocyte proliferation. Western blotting was used to detect hepatic microtubule-associated protein 1 light chain 3 (LC3)-II protein expression as a marker for autophagy. Hepatic gene expression levels of proliferation-, inflammation- and angiogenesis-related genes were examined by real-time reverse transcription-polymerase chain reaction and serum bilirubin and transaminase levels were analyzed at the clinical chemical core facility of the Erasmus MC-University Medical Center.
RESULTS: mTOR inhibition significantly suppressed regeneration, shown by decreased hepatocyte proliferation (2% vs 12% BrdU positive hepatocyte nuclei at day 2, P < 0.01; 0.8% vs 1.4% at day 5, P = 0.02) and liver weight reconstitution (63% vs 76% of initial total liver weight at day 3, P = 0.04), and furthermore increased serum transaminase levels (aspartate aminotransferase 641 U/L vs 185 U/L at day 2, P = 0.02). Expression of the autophagy marker LC3-II, which was reduced during normal liver regeneration, increased after mTOR inhibition (46% increase at day 2, P = 0.04). Hepatic gene expression showed an increased inflammation-related response [tumor necrosis factor (TNF)-α 3.2-fold upregulation at day 2, P = 0.03; IL-1Ra 6.0-fold upregulation at day 2 and 42.3-fold upregulation at day 5, P < 0.01] and a reduced expression of cell cycle progression and angiogenesis-related factors (HGF 40% reduction at day 2; vascular endothelial growth factor receptor 2 50% reduction at days 2 and 5; angiopoietin 1 60% reduction at day 2, all P≤ 0.01). Treatment with the regeneration stimulating cytokine IL-6 and growth factor HGF could overcome the inhibitory effect on liver weight (75% of initial total liver weight at day 3, P = 0.02 vs immunosuppression alone and P = 0.90 vs controls) and partially reversed gene expression changes caused by rapamycin (TNF-α and IL-1Ra levels at day 2 were restored to control levels). However, no significant changes in hepatocyte proliferation, serum injury markers or autophagy were found.
CONCLUSION: mTOR inhibition severely impairs liver regeneration and increases autophagy after PH. These effects are partly reversed by stimulation of the IL-6 and HGF pathways.
Collapse
|
12
|
Sperling J, Ziemann C, Gittler A, Benz-Weißer A, Menger MD, Kollmar O. Hepatic arterial infusion of temsirolimus inhibits tumor growth of colorectal rat liver metastases even after a growth stimulating procedure like liver resection. J Surg Res 2013; 185:587-94. [PMID: 23845871 DOI: 10.1016/j.jss.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hepatic arterial infusion (HAI) of specific anti-tumor drugs can be more effective compared with systemic drug application. Herein, we studied whether HAI of temsirolimus is effective to inhibit tumor growth of colorectal liver metastases after liver resection. MATERIALS AND METHODS Twenty-four Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats were randomized to four groups and underwent subcapsular implantation of CC531 colorectal cancer cells in the left liver lobe. In two groups, a 70% liver resection (Phx) was performed simultaneously. After 10 d, animals received either a HAI of temsirolimus (CCI-779) or saline solution (controls). Tumor growth was determined on d 10 and 13 using three-dimensional ultrasound. On d 13, tumor tissue was removed for histologic and immunohistochemical analysis. RESULTS Sham controls revealed a tumor growth of ∼40% from d 10 to d 13. HAI of temsirolimus completely inhibited this tumor growth. Controls with Phx showed a tumor growth of >60%. In contrast, HAI of temsirolimus in Phx animals did not only inhibit tumor growth but was even capable of decreasing the tumor size by ∼8%. Immunohistochemical analysis of the tumors showed a decreased proliferation rate and an increased cleaved caspase-3 activity, which was associated with a significant reduction of platelet endothelial cell adhesion molecule (PECAM)-1-positive cells after HAI of temsirolimus. CONCLUSIONS HAI of temsirolimus inhibits tumor growth of CC531 colorectal liver metastases even if a growth-stimulating procedure like Phx is performed. Inhibition of tumor growth is provided by a decrease of tumor vascularization associated with an inhibition of tumor cell proliferation and an induction of tumor cell apoptosis.
Collapse
Affiliation(s)
- Jens Sperling
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center, Georg August University, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Hirashima K, Baba Y, Watanabe M, Karashima RI, Sato N, Imamura Y, Hiyoshi Y, Nagai Y, Hayashi N, Iyama KI, Baba H. Phosphorylated mTOR expression is associated with poor prognosis for patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2010; 17:2486-93. [PMID: 20339946 DOI: 10.1245/s10434-010-1040-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) plays central roles in the regulation of cell growth and proliferation by monitoring nutrient availability, cellular energy level, oxygen level, and mitogenic signals. The aberrant activation of mTOR in relation to clinical outcome has been reported in several types of cancers. mTOR is increasingly important as a potential target for anticancer therapy. Nonetheless, a prognostic feature of mTOR activation in esophageal squamous cell carcinoma (ESCC) remains uncertain. MATERIALS AND METHODS First, in order to validate phospho-specific mTOR antibody (Ser2448), phosphorylated mTOR (p-mTOR) expression levels in five ESCC cell lines under cultural conditions with or without everolimus (mTOR inhibitor, also known as RAD001) were evaluated by in vitro immunohistochemistry and immunoblotting. Second, we examined p-mTOR expression by immunohistochemistry using 143 resected ESCC specimens. Prognostic significance of p-mTOR expression was examined by Cox regression and Kaplan-Meier analyses. RESULTS Among 143 patients, 71 (49.7%) were classified into p-mTOR-positive and 72 (50.3%) were classified into p-mTOR-negative. Compared with p-mTOR-negative patients, p-mTOR-positive patients experienced high overall mortality [hazard ratio (HR) 2.44; 95% confidence interval (CI), 1.24-4.83; P = 0.008], which persisted in multivariate analysis (multivariate HR 2.92; 95% CI, 1.48-5.78; P = 0.002). A similar finding was observed for esophageal cancer-specific mortality. p-mTOR expression was not related with any clinical or pathologic variables including age, sex, tumor location, histological grading, operative procedure, T classification (tumor invasion), or lymph-node metastasis. CONCLUSIONS p-mTOR overexpression was independently associated with poor prognosis in ESCC, supporting the potential for mTOR as a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Kotaro Hirashima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|