1
|
Li Y, Zhang H, Yue L, Fu C, Grimm R, Li W, Guo W, Tong T. Whole tumor based texture analysis of magnetic resonance diffusion imaging for colorectal liver metastases: A prospective study for diffusion model comparison and early response biomarker. Eur J Radiol 2024; 170:111203. [PMID: 38007855 DOI: 10.1016/j.ejrad.2023.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE To evaluate and compare the diagnostic value of diffusion-related texture analysis parameters obtained from various magnetic resonance diffusion models as early predictors of the clinical response to chemotherapy in patients with colorectal liver metastases (CRLM). METHODS Patients (n = 145) with CRLM were prospectively and consecutively enrolled and scanned using diffusion-weighted imaging (DWI)-magnetic resonance imaging (MRI)/intravoxel incoherent motion (IVIM)/diffusion kurtosis imaging (DKI) before (baseline) and two-three weeks after (follow-up) commencing chemotherapy. Therapy response was evaluated based on the Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). The histogram and texture parameters of each diffusion-related parametric map were analysed between the responding and non-responding groups, screened using LASSO, and fitted with binary logistic regression models. The diagnostic efficacy of each model in the early prediction of CRLM was analysed, and the corresponding receiver operating characteristic (ROC) curve was drawn. The area under the curve (AUC) and 95% confidence intervals (CI) were calculated. RESULTS Of the 145 analysed patients, 69 were in the responding group and 76 were in the non-responding group. Among all models, the difference value based on the histogram and texture features of the DKI-derived parameters performed best for the early prediction of CRLM treatment efficacy. The AUC of the DKI model in the validation set reached 0.795 (95% CI 0.652-0.938). Among the IVIM-derived parameters, the difference model based on D and D* performed best, and the AUC in the validation set reached 0.737 (95% CI 0.586-0.889). Finally, in the DWI sequence, the model comprising baseline features performed the best, with an AUC of 0.699 (95% CI 0.537-0.86) in the validation set. CONCLUSIONS Baseline DWI parameters and follow-up changes in IVIM and DKI parameters predicted the chemotherapeutic response in patients with CRLM. In addition, as very early predictors, DKI-derived parameters were more effective than DWI- and IVIM-related parameters, in which changes in D-parameters performed best.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Yue
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Fu
- MR Collaboration, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Wenhua Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Weijian Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Tong Tong
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|