1
|
Kotoulas SC, Spyratos D, Porpodis K, Domvri K, Boutou A, Kaimakamis E, Mouratidou C, Alevroudis I, Dourliou V, Tsakiri K, Sakkou A, Marneri A, Angeloudi E, Papagiouvanni I, Michailidou A, Malandris K, Mourelatos C, Tsantos A, Pataka A. A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2025; 17:882. [PMID: 40075729 PMCID: PMC11898928 DOI: 10.3390/cancers17050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5-10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities-such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans-but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Dionysios Spyratos
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Pulmonary Department, Unit of thoracic Malignancies Research, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece; (D.S.); (K.P.); (K.D.)
| | - Afroditi Boutou
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Evangelos Kaimakamis
- 1st ICU, Medical Informatics Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| | - Christina Mouratidou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioannis Alevroudis
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Vasiliki Dourliou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Kalliopi Tsakiri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Agni Sakkou
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Alexandra Marneri
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Elena Angeloudi
- Adult ICU, General Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (C.M.); (I.A.); (V.D.); (K.T.); (A.S.); (A.M.); (E.A.)
| | - Ioanna Papagiouvanni
- 4th Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Anastasia Michailidou
- 2nd Propaedeutic Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantinos Malandris
- 2nd Internal Medicine Department, General Hospital of Thessaloniki “Ippokrateio”, Aristotle’s University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Constantinos Mourelatos
- Biology and Genetics Laboratory, Aristotle’s University of Thessaloniki, 54624 Thessaloniki, Greece;
| | - Alexandros Tsantos
- Pulmonary Department General, Hospital of Thessaloniki “Ippokrateio”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece; (A.B.); (A.T.)
| | - Athanasia Pataka
- Respiratory Failure Clinic and Sleep Laboratory, General Hospital of Thessaloniki “G. Papanikolaou”, Aristotle’s University of Thessaloniki, Leoforos Papanikolaou Municipality of Chortiatis, 57010 Thessaloniki, Greece;
| |
Collapse
|
2
|
Mehri-Kakavand G, Mdletshe S, Wang A. A Comprehensive Review on the Application of Artificial Intelligence for Predicting Postsurgical Recurrence Risk in Early-Stage Non-Small Cell Lung Cancer Using Computed Tomography, Positron Emission Tomography, and Clinical Data. J Med Radiat Sci 2025. [PMID: 39844750 DOI: 10.1002/jmrs.860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs. METHODS A literature search was conducted across multiple databases, focusing on studies published between 2018 and 2024 that employed radiomics, machine learning, and deep learning based on preoperative positron emission tomography (PET), computed tomography (CT), and PET/CT, with or without clinical data integration. Sixteen studies met the inclusion criteria and were assessed for methodological quality using the METhodological RadiomICs Score (METRICS). RESULTS The reviewed studies demonstrated the potential of radiomics and AI models in predicting postoperative recurrence risk. Various approaches showed promising results, including handcrafted radiomics features, deep learning models, and multimodal models combining different imaging modalities with clinical data. However, several challenges and limitations were identified, such as small sample sizes, lack of external validation, interpretability issues, and the need for effective multimodal imaging techniques. CONCLUSIONS Future research should focus on conducting larger, prospective, multicentre studies, improving data integration and interpretability, enhancing the fusion of imaging modalities, assessing clinical utility, standardising methodologies, and fostering collaboration among researchers and institutions. Addressing these aspects will advance the development of robust and generalizable AI models for predicting postsurgical recurrence risk in early-stage NSCLC, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Ghazal Mehri-Kakavand
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sibusiso Mdletshe
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Matai Medical Research Institute, Gisborne, New Zealand
- Medical Imaging Research Centre, The University of Auckland, Auckland, New Zealand
- Centre for Co-Created Ageing Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Kudo Y, Nakamura T, Matsubayashi J, Ichinose A, Goto Y, Amemiya R, Park J, Shimada Y, Kakihana M, Nagao T, Ohira T, Masumoto J, Ikeda N. AI-driven Characterization of Solid Pulmonary Nodules on CT Imaging for Enhanced Malignancy Prediction in Small-sized Lung Adenocarcinoma. Clin Lung Cancer 2024; 25:431-439. [PMID: 38760224 DOI: 10.1016/j.cllc.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, which is why an objective and reliable diagnostic tool is necessary. This study focuses on artificial intelligence (AI) to automatically analyze such tumors and to develop prospective AI systems that can independently differentiate highly malignant nodules. MATERIALS AND METHODS Our retrospective study analyzed 246 patients who were diagnosed with negative clinical lymph node metastases (cN0) using positron emission tomography-computed tomography (PET/CT) imaging and underwent surgical resection for lung adenocarcinoma. AI detected tumor sizes ≤2 cm in these patients. By utilizing AI to classify these nodules as solid (AI_solid) or non-solid (non-AI_solid) based on confidence scores, we aim to correlate AI determinations with pathological findings, thereby advancing the precision of preoperative assessments. RESULTS Solid nodules identified by AI with a confidence score ≥0.87 showed significantly higher solid component volumes and proportions in patients with AI_solid than in those with non-AI_solid, with no differences in overall diameter or total volume of the tumors. Among patients with AI_solid, 16% demonstrated lymph node metastasis, and a significant 94% harbored invasive adenocarcinoma. Additionally, 44% were upstaging postoperatively. These AI_solid nodules represented high-grade malignancies. CONCLUSION In small-sized lung cancer diagnosed as cN0, AI automatically identifies tumors as solid nodules ≤2 cm and evaluates their malignancy preoperatively. The AI classification can inform lymph node assessment necessity in sublobar resections, reflecting metastatic potential.
Collapse
Affiliation(s)
- Yujin Kudo
- Department of Surgery, Tokyo Medical University, Japan.
| | | | - Jun Matsubayashi
- Department of Anatomic Pathology, Tokyo Medical University, Japan
| | | | - Yushi Goto
- Department of Surgery, Tokyo Medical University, Japan
| | | | - Jinho Park
- Department of Radiology, Tokyo Medical University, Japan
| | | | | | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Japan
| | - Tatsuo Ohira
- Department of Surgery, Tokyo Medical University, Japan
| | | | | |
Collapse
|
4
|
Quanyang W, Yao H, Sicong W, Linlin Q, Zewei Z, Donghui H, Hongjia L, Shijun Z. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Med 2024; 13:e7140. [PMID: 38581113 PMCID: PMC10997848 DOI: 10.1002/cam4.7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND The exceptional capabilities of artificial intelligence (AI) in extracting image information and processing complex models have led to its recognition across various medical fields. With the continuous evolution of AI technologies based on deep learning, particularly the advent of convolutional neural networks (CNNs), AI presents an expanded horizon of applications in lung cancer screening, including lung segmentation, nodule detection, false-positive reduction, nodule classification, and prognosis. METHODOLOGY This review initially analyzes the current status of AI technologies. It then explores the applications of AI in lung cancer screening, including lung segmentation, nodule detection, and classification, and assesses the potential of AI in enhancing the sensitivity of nodule detection and reducing false-positive rates. Finally, it addresses the challenges and future directions of AI in lung cancer screening. RESULTS AI holds substantial prospects in lung cancer screening. It demonstrates significant potential in improving nodule detection sensitivity, reducing false-positive rates, and classifying nodules, while also showing value in predicting nodule growth and pathological/genetic typing. CONCLUSIONS AI offers a promising supportive approach to lung cancer screening, presenting considerable potential in enhancing nodule detection sensitivity, reducing false-positive rates, and classifying nodules. However, the universality and interpretability of AI results need further enhancement. Future research should focus on the large-scale validation of new deep learning-based algorithms and multi-center studies to improve the efficacy of AI in lung cancer screening.
Collapse
Affiliation(s)
- Wu Quanyang
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huang Yao
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wang Sicong
- Magnetic Resonance Imaging ResearchGeneral Electric Healthcare (China)BeijingChina
| | - Qi Linlin
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhang Zewei
- PET‐CT CenterNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hou Donghui
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Hongjia
- PET‐CT CenterNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhao Shijun
- Department of Diagnostic RadiologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Zhang H, Deng Y, Xiaojie M, Zou Q, Liu H, Tang N, Luo Y, Xiang X. CT radiomics for predicting the prognosis of patients with stage II rectal cancer during the three-year period after surgery, chemotherapy and radiotherapy. Heliyon 2024; 10:e23923. [PMID: 38223741 PMCID: PMC10787243 DOI: 10.1016/j.heliyon.2023.e23923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Objective Pre-treatment enhanced CT image data were used to train and build models to predict the efficacy of non-small cell lung cancer after conventional radiotherapy and chemotherapy using two classification algorithms, Logistic Regression (LR) and Gaussian Naive Baye (GNB). Methods In this study, we used pre-treatment enhanced CT image data for region of interest (ROI) sketching and feature extraction. We utilized the least absolute shrinkage and selection operator (LASSO) mutual confidence method for feature screening. We pre-screened logistic regression (LR) and Gaussian naive Bayes (GNB) classification algorithms and trained and modeled the screened features. We plotted 5-fold and 10-fold cross-validated receiver operating characteristic (ROC) curves to calculate the area under the curve (AUC). We performed DeLong's test for validation and plotted calibration curves and decision curves to assess model performance. Results A total of 102 patients were included in this study, and after a comparative analysis of the two models, LR had only slightly lower specificity than GNB, and higher sensitivity, accuracy, AUC value, precision, and F1 value than GNB (training set accuracy: 0.787, AUC value: 0.851; test set accuracy: 0.772, AUC value: 0.849), and the LR model has better performance in both the decision curve and the calibration curve. Conclusion CT can be used for efficacy prediction after radiotherapy and chemotherapy in NSCLC patients. LR is more suitable for predicting whether NSCLC prognosis is in remission without considering the computing speed.
Collapse
Affiliation(s)
- Hanjing Zhang
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Yu Deng
- The Affiliated Cancer Hospital of Guizhou Medical University, GuiYang, Guizhou Province, 550000, China
| | - M.A. Xiaojie
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Qian Zou
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Huanhui Liu
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Ni Tang
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Yuanyuan Luo
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| | - Xuejing Xiang
- Department of Oncology, Affiliated Hospital of Chuanbei Medical College, Nanchong, Sichuan Province, 637000, China
| |
Collapse
|
6
|
Iyer K, Beeche CA, Gezer NS, Leader JK, Ren S, Dhupar R, Pu J. CT-Derived Body Composition Is a Predictor of Survival after Esophagectomy. J Clin Med 2023; 12:2106. [PMID: 36983109 PMCID: PMC10058526 DOI: 10.3390/jcm12062106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Body composition can be accurately quantified based on computed tomography (CT) and typically reflects an individual's overall health status. However, there is a dearth of research examining the relationship between body composition and survival following esophagectomy. METHODS We created a cohort consisting of 183 patients who underwent esophagectomy for esophageal cancer without neoadjuvant therapy. The cohort included preoperative PET-CT scans, along with pathologic and clinical data, which were collected prospectively. Radiomic, tumor, PET, and body composition features were automatically extracted from the images. Cox regression models were utilized to identify variables associated with survival. Logistic regression and machine learning models were developed to predict one-, three-, and five-year survival rates. Model performance was evaluated based on the area under the receiver operating characteristics curve (ROC/AUC). To test for the statistical significance of the impact of body composition on survival, body composition features were excluded for the best-performing models, and the DeLong test was used. RESULTS The one-year survival model contained 10 variables, including three body composition variables (bone mass, bone density, and visceral adipose tissue (VAT) density), and demonstrated an AUC of 0.817 (95% CI: 0.738-0.897). The three-year survival model incorporated 14 variables, including three body composition variables (intermuscular adipose tissue (IMAT) volume, IMAT mass, and bone mass), with an AUC of 0.693 (95% CI: 0.594-0.792). For the five-year survival model, 10 variables were included, of which two were body composition variables (intramuscular adipose tissue (IMAT) volume and visceral adipose tissue (VAT) mass), with an AUC of 0.861 (95% CI: 0.783-0.938). The one- and five-year survival models exhibited significantly inferior performance when body composition features were not incorporated. CONCLUSIONS Body composition features derived from preoperative CT scans should be considered when predicting survival following esophagectomy.
Collapse
Affiliation(s)
- Kartik Iyer
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cameron A. Beeche
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Naciye S. Gezer
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joseph K. Leader
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shangsi Ren
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, Division of Thoracic and Foregut Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical Services Division, Thoracic Surgery, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, USA
| | - Jiantao Pu
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Usuzaki T, Takahashi K, Ishikuro M, Obara T, Yamaura T, Kamimoto M, Majima K. Letter to the Editor: Comment on ''Radiomics with Artificial Intelligence for the Prediction of Early Recurrence in Patients with Clinical Stage IA Lung Cancer''. Ann Surg Oncol 2023; 30:912-913. [PMID: 36385688 DOI: 10.1245/s10434-022-12809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Affiliation(s)
| | - Kengo Takahashi
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.,Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | | | | | | |
Collapse
|
8
|
Shimada Y. Reply to: Letter to the Editor: Comment on ''Radiomics with Artificial Intelligence for the Prediction of Early Recurrence in Patients with Clinical Stage IA Lung Cancer'' by Usuzaki, Takuma et al. Ann Surg Oncol 2023; 30:914-915. [PMID: 36376570 DOI: 10.1245/s10434-022-12822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
9
|
Shimada Y. ASO Author Reflections: The Clinical Use of Radiomics with Artificial Intelligence in Patients with Early-Stage Lung Cancer. Ann Surg Oncol 2022; 29:8194-8195. [PMID: 36100830 DOI: 10.1245/s10434-022-12518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|