1
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
2
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Endoh T, Ohyama T, Sugimoto N. RNA-Capturing Microsphere Particles (R-CAMPs) for Optimization of Functional Aptamers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805062. [PMID: 30773785 DOI: 10.1002/smll.201805062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
RNA aptamers are useful building blocks for constructing functional nucleic acid-based nanoarchitectures. The abilities of aptamers to recognize specific ligands have also been utilized for various biotechnological applications. Solution conditions, which can differ depending on the application, impact the affinity of the aptamers, and thus it is important to optimize the aptamers for the solution conditions to be employed. To simplify the aptamer optimization process, an efficient method that enables re-selection of an aptamer from a partially randomized library is developed. The process relies on RNA-capturing microsphere particles (R-CAMPs): each particle displays different clones of identical DNA and RNA sequences. Using a fluorescence-activated cell sorter, the R-CAMPs that are linked to functional aptamers are sorted. It is demonstrated that after a single round of reselection, several functional aptamers, including the wild-type, are selected from a library of 16 384 sequences. The selection using R-CAMPs is further performed under the solution containing high concentration of ethylene glycol, suggesting applicability in various conditions to optimize an aptamer for a particular application. As any type of RNA clone can be displayed on the microspheres, the technology demonstrated here will be useful for the selection of RNAs based on diverse functions.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
4
|
Rode AB, Endoh T, Sugimoto N. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
5
|
Rode AB, Endoh T, Sugimoto N. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit. Angew Chem Int Ed Engl 2018; 57:6868-6872. [PMID: 29663603 DOI: 10.1002/anie.201803052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/06/2018] [Indexed: 11/07/2022]
Abstract
In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg2+ -containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg2+ solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering.
Collapse
Affiliation(s)
- Ambadas B Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Endoh T, Sugimoto N. Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. CHEM REC 2017; 17:817-832. [DOI: 10.1002/tcr.201700016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20 Minatojima-minamimachi Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
7
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016; 55:14315-14319. [DOI: 10.1002/anie.201605431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
8
|
Rode AB, Endoh T, Sugimoto N. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ambadas B. Rode
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|